WAR SURPLUS BARGAINS

Government's 7 X 50 Binoculars

You Assemble them! Complete Optics! Complete Metal Parts! Save More Than ½ Regular Cost! METAL PARTS—All Metal Parts—completely finished—for assembly of 7 X 50 Binoculars. No machining required. Sturdy Binocular Carrying Case optional with each set of Metal Parts. Stock #842-K ... \$39.40 Postpaid, plus \$4.80 for Case-Total \$44.20 OPTICS—All Lenses and Prisms for assembling 7 X 50 Binoculars. Excellent condition—perfect or near-perfect—new low reflection coating. Stock #5102-K

\$25.00 Postpaid

(These are standard American-made parts . . . not Japanese, French or German.) Include 20% Federal Excise Tax if you buy both Optics and Metal Parts. Other items of interest: 6 X 30 Gov't Binoculars, Drift Meters, Gun Sights.

MOUNTED ANASTIGMAT LENSES—Use for Projectors, Enlargers, Copying Cameras. Complete with Shutter and Diaphragm. Value about \$20. An excellent buy. WE WILL INCLUDE FREE ILLUSTRATED BOOKLET on HOW TO MAKE YOUR OWN ENLARGER.

.87.50 Postpaid Stock #8007-K-Speed of f/6.3, focal length approx. 100 mms.

\$9.50 Postpaid SLIDE PROJECTOR SETS-Consist of all unmounted lenses you need to

make the following size projectors: Stock #4038-K-2½" X 2½"... Stock #4039-K-2½" X 3½"... 83.35 Postpaid \$3.35 Postpaid Stock #4029-K-35 mm. .. \$2.85 Postpaid

BUBBLE SEXTANT TYPE A-SA. Excellent condition but may be slightly used. Each has been carefully checked and collimated. Averaging device for night-time use. Carrying Case and instruction booklet included. Gov't, cost about \$325.00

Stock No. 946-K \$32.50 Postpaid

NEW BULLETIN on our BIG VARIETY OF PRISMS—Over 50 different right angle Prisms, Rhomboidal, Binocular Porro, Leman, Porro-Abbe, Brashear-Hastings, Penta, Dove, Pentagon. Ocular, and Amici Roof Prisms, Also Beam Splitters, Wedges and many others.

We have literally millions of war surplus lenses and prisms for sale ar bargain prices. Write for Catalog "K" Sent Free! Order by Stock No. Satisfaction Guaranteed

P. O. AUDUBON. NEW JERSEY EDMUND SALVAGE CO.

PHYSICISTS

During the coming year the Armour Research Foundation is planning to expand considerably its research activities in the following fields: nuclear physics, electricity and magnetism, acoustics and vibrations, optics, spectroscopy, and high-pressure phenom-Unusual opportunities are available for fundamental and applied research and for professional advancement. The Foundation will welcome applications from persons with several years of research and/or administrative experience.

Write:

Chairman, Physics Research Armour Research Foundation 35 West 33rd Street Chicago 16, Illinois

In a series of three articles of which the present one is the last, Richard C. Tolman has presented a quasithermodynamic analysis of the structure of the transition zone between a liquid and its vapor which leads to the important conclusion that the superficial density is generally positive. Hence the surface tension of small drops is less than that when the liquid has a plane surface and decreases with decreasing droplet size. The effect is small but it is not negligible for embryo droplets in the borderland between the macroscopic and the microscopic. For drop radii of the order of magnitude of several hundred Angstrom units, decreases in surface tension of a few percent are to be expected in representative cases.

Tolman's analysis is based upon the hypothesis, which he recognized to be only approximately valid, that macroscopic thermodynamics can be applied to each layer of the transition zone between liquid and vapor. The thermodynamic functions are thus supposed to have values identical with those of the fluid in bulk appropriate to the given temperature and the local density of the laver. JOHN G. KIRKWOOD

The Effect of Droplet Size on Surface Tension. By Richard C. Tolman. J. Chem. Phys. 17: 334, March, 1949.

Polymer Chains

The thousands of atoms in long chain polymer molecules are connected to one another by valance bonds about which they may rotate. The configuration of these molecules has customarily been studied by an analogy to the diffusion of a particle which moves about in successive displacements of equal length but in random directions. The diffusion problem and the polymer configuration problem differ, however, in one important respect not ordinarily taken into account. Whereas a diffusing particle may cross its previous path with impunity, there obviously cannot be a configuration in which two elements of the polymer chain occupy the same space. The modification of the configurational dimensions resulting from this stipulation has been investigated by an approximate statistical method and the results confirmed by numerous experiments. P.J.F.

The Configuration of Real Polymer Chains. By Paul J. Flory. J. Chem. Phys. 17: 303, March, 1949.

Visual Ultrasonics

The problem of detecting and measuring the wavelength, intensity, and absorption of ultrasonic vibrations has been solved in a number of ingenious ways. Mechanical methods, involving the use of dust figures, the condensation of alcohol mist at the loops of stationary waves, and the measurement of sound radiation pressure by radiometers have been used frequently. Electrical and visual methods, however, are more versatile and have proved considerably more successful. The technique described in the present paper employs a visual method which appears capable of rather widespread application.

More than eighty years ago, Toepler availed himself of Foucault's method for rendering visible minute optical disturbances and perfected the so-called "schlieren method" which has made possible the visualization in a transparent medium of those regions which have a refractive index differing only slightly from the surrounding regions. During recent years, the method has been used with spectacular success in air-flow analysis and correlated aerodynamic problems. As shown by numerous workers, the technique can also be employed for the study of ultrasonic phenomena.

The authors have described a method similar in broad general outline to that described by G. W. Willard, although differing in certain details which appear to lend convenience in operation and increased versatility in application. A series of photographs has been prepared which illustrates the close analogy existing between light waves and ultrasonic waves with respect to the wave phenomena of refraction, diffraction, and interference. The authors feel that this technique may be a considerable aid to students of optics in visualizing many complex optical effects. C.J.B.

Visual Methods for Studying Ultrasonic Phenomena. By R. Bowling Barnes and Charles J. Burton. J. App. Phys. 20: 286, March, 1949.

Cosmic Ray Protons

Relative intensities of various types of cosmic ray particles at different atmospheric levels give clue to the collision processes and nuclear interactions which cause them. These intensities are most often determined by using cloud chambers or proportional counters to measure the specific ionization of the particles. The counting efficiency of a Geiger-Mueller counter can be made to depend heavily upon the specific ionization of a particle by filling it with a lighter gas at a lower pressure than usual.

A counter telescope designed to measure the counting efficiency of such a low pressure counter has been operated at 4300 meters atop Mt. Evans in Colorado. An excess in counting efficiency over that expected for mesons alone was observed for various thicknesses of lead ranging from ten to thirty-four centimeters.

This excess is attributed to more heavily ionizing particles than either mu or pi mesons. Assuming they are protons, the data indicate that they comprise seventeen (plus or minus five) percent of the total radiation penetrating fifteen centimeters of lead. This value is in excess of previously determined proton intensities at this altitude. The proton absorption curve obtained is in agreement with that for the radiation producing bursts measured under large thicknesses of lead at the same altitude by other observers. This supports their view that the burst primaries are protons.

The Intensity of Heavily Ionizing Penetrating Particles at 4300 Meter Altitude. By Frank L. Hereford, Phys. Rev. 75: 923, March 15, 1949.

CALENDAR

of EVENTS

April 4-6	Second Provide	Symposium nce, R. I.	on	Plasticity,	Brown	University,
spin 4 0	Provide	nce, R. I.		1300,000,00		

April 4-8	Society	of	Motion	Picture	Engineers,	New	York
	City						

April 11-15	American fornia	Society	for Metals		Los	Angeles,		Cali-
April 12	American	Ceramic	Soci	ety and	Pitt	sburgh	Ph	ysical

American Ceramic Society and Pittsburgh Physical Society (Joint Meeting) Symposium, Physics and Ceramics, Pittsburgh, Pennsylvania

American Physical Society (Southeastern Section), Clemson, South Carolina April 15-16

American Institute of Electrical Engineers (South-western District), Dallas, Texas April 19-21

American Society of Biological Chemists (Annual Meeting), Detroit, Michigan April 19-22

American Geophysical Union, Washington, D. C. April 20-22 American Society of Civil Engineers, Oklahoma City, Oklahoma April 20-23

American Philosophical Society, Philadelphia, Penn-April 21-23 sylvania

American Physical Society (Spring Meeting New York State Section), Syracuse, New York April 22-23

American Ceramic Society, Cincinnati, Ohio April 24-28 Radio Manufacturers Association and Institute of Radio Engineers (Annual Meeting, jointly spon-sored), Philadelphia, Pennsylvania April 25-27

National Academy of Sciences, Washington, D. C. April 25-27

Technical Association of Pulp and Paper Industries (Coating Conference), Grand Rapids, Michigan April 25-28 Illuminating Engineering Society (Canadian Re-gional Conference), Toronto, Ontario April 28-29

American Physical Society, Washington, D. C. April 28-30 American Mathematical Society, Philadelphia, Penn-April 29-30

sylvania, and Lawrence, Kansas Mathematical Society, Stanford Univer-April 30 American

sity, California International Scientific Radio Union and Institute of Radio Engineers (Joint Meeting), Washington, May 2-4

American Society of Mechanical Engineers (Spring Meeting), New London, Connecticut May 2-4

National Association of State Universities (Annual Meeting), Chicago, Illinois May 4-5

Acoustical Society of America (Twentieth Anniversary Meeting), New York City May 5-7

American Council on Education (Annual Meeting), May 6-7 Washington, D. C.

American Institute of Chemical Engineers, Tulsa, May 8-12 Oklahoma

American Society of Chemical Engineers, Tulsa, May 8-12 Oklahoma

American Oil Chemists' Society (Annual Meeting), May 9-12 New Orleans, Louisiana

Instrument Society of America (Spring Meeting), May 12-13 Toronto, Canada May 13-14

Illuminating Engineering Society (Northeastern Regional Conference), Hartford, Connecticut Illuminating Engineering Society (Great Lakes Regional Conference), Rochester, New York May 23-24

Canadian Association of Physicists, Quebec, Canada Tune 1-3 Tune 2-3

Illuminating Engineering Society (East Central Regional Conference), Harrisburg, Pennsylvania American Society of Refrigerating Engineers (Spring Meeting), S.S. Richelieu, cruising St. Lawrence and June 5-9

Saguenay Rivers Society of Automotive Engineers (Summer Meeting), French Lick, Indiana June 5-10