

Hot Wax

Although much is known of the effect of radiation upon gases and systems containing water, relatively little is known of its effect on organic nonconducting materials. The present study gives a quantitative treatment of the effects on paraffin wax irradiated by means of uranium and carbon 14 sources; it was possible to compute the amount of beta radiation absorbed by the wax for various exposure times.

The effect actually measured was the increase of electrical conductivity in the sample during irradiation, as well as the decrease of conductivity observed after the source was removed. An estimate could then be made of the number of ion pairs produced per unit energy absorbed, that is, the efficiency of ionization. The efficiency is in this case markedly lower than it is for irradiated gases because the majority of ions produced recombine quickly. Only a fraction of all ions, probably the small ones, are immediately swept away by the applied electric field and thus escape recombination, and it is this fraction which the method determines.

Since ionization is the primary effect of radiation, a study of this kind gives essential information on the expected chemical changes of organic dielectrics under irradiation. The research might be continued by using hydrocarbons of varying chemical constitution in order to establish the role of specific groups with respect to the efficiency of ionization.

A.G.

Ionization of Paraffin Wax by Beta-Radiation. By Andrew Gemant. Jour. App. Phys. 20: 887, October, 1949.

Cool Crystals

A relatively simple method has been developed for low temperature x-ray diffraction studies of materials which are not normally solid at room temperature. The technique was developed in the course of an x-ray investigation of the structure of cyclo-octatetraene and benzene.

The sample is sealed in a thin-walled glass capillary which is contained in an insulating, double-walled, cylindrical specimen holder constructed of thin, unstressed polystyrene film, which permits visual observation and has a low absorption of x-rays. The specimen is cooled by a jet of cold compressed gas, and may be oscillated or rotated completely. A horizontal polarizing microscope, mounted on the apparatus, is used to determine position and orientation as the freezing point for anistropic crystals is observed.

Multicrystalline powder specimens are obtained by rapid freezing of the sample. For single crystals, the quick frozen powder specimen is partially melted, then slowly refrozen, which usually results in single crystals sufficiently large for diffraction work. The apparatus is so constructed that the polarizing microscope may be removed and x-ray diagrams made without disturbing the specimen.

This technique is applicable to a large number of materials, both liquid and gaseous, whose structures have not been determined. It is expected that further developments along these lines will provide an independent check on structural details of molecules which have heretofore been studied only by electron diffraction or spectroscopic methods.

A Low Temperature Single X-Ray Diffraction Technique. By H. S. Kaufman and I. Fankuchen. Rev. Sci. Inst. 20: 733, October, 1949.

Wide Range Monitor

The gamma radiation associated with many instruments and experiments in nuclear physics can be a grave danger to the operating personnel. Constant vigilance is necessary to make certain that the tolerance dose (one-tenth roent-gen per day) is not exceeded. In many cases, particularly near large ion accelerators, the radiation levels encountered may range over a factor of ten thousand or even one hundred thousand. To cover such a large range with one monitoring instrument is usually very difficult, particularly if completely unattended and automatic operation is required.

The recent development of the scintillation counter permits a comparatively simple solution to the problem because it is sensitive and lacks saturation effects at high radiation levels. The technique employed in this wide range radiation instrument is to integrate the pulse current output of the scintillation counter's associated photomultiplier tube. The direct current voltage so obtained varies directly with the gamma intensity and is measured by comparison with a reference potential derived from a potentiometer, portions of which are shunted by fixed resistors. The potentiometer is driven by a servo motor arranged in the usual null circuit.

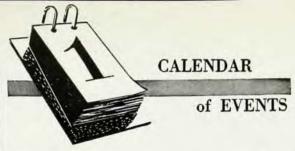
The comparison voltages available from the potentiometer range over a factor of one hundred thousand which is, therefore, the dynamic range of the servo system. A large needle is attached to the potentiometer shaft to indicate radiation level. The instrument will measure intensities from one milliroentgen per hour to one hundred roentgens per hour to an accuracy of better than fifteen percent on the single five-decade scale and is approximately linear in each decade. The upper radiation limit is determined by the onset of fatigue in the photomultiplier while the lower limit is due to dark current noise in the tube. However, techniques are described in the paper which result in cancellation of most of the dark current and, therefore, permit a considerable extension in the range of the instrument beyond five decades. L.R. A Wide Range Radiation Instrument, By Leonard Reiffel and Glenn Burgwald. Rev. Sci. Inst. 20: 711, October, 1949.

Microscope Objectives

A new series of microscope objectives has been studied with which the microscopist may make visual observations and take ultraviolet photographs without altering the focal setting of his instrument. The present demand for microscopes capable of operating in the near ultraviolet region cannot be satisfied by instruments whose objectives, based on standard formulas, bring only limited intervals of the ultraviolet spectrum to a common focus. These papers present a preliminary study of the markedly improved performance which may be realized by using mirrors as well as lenses in the microscope objective. It was found that spherical mirrors combined with spherical lenses of fluorite, or of fluorite and fused quartz, can form objectives which are fully corrected for ultraviolet, visible, and near infrared light.

As a result of the preliminary studies a series of ultraviolet objectives of various magnifications is now being computed. These objectives will be adapted to fit the conventional triple nosepiece. A major problem in the design of reflecting objectives of large numerical aperture is to provide object and image planes which are accessible and at the same time to make sure that neither mirror obscures a large portion of the objective aperture. Theoretical considerations, confirmed by experiment, indicate that image quality suffers if much more than ten percent in area of the objective aperture is obscured. It was found that the requirement of a small obscuring ratio may be satisfied if light from the specimen is first incident on a concave mirror and is then reflected onto a much smaller convex mirror located between the first mirror and the specimen. From the convex mirror, the light proceeds through a central hole in the concave mirror and continues to the plane of the magnified image. Lens elements may be inserted at any position in this optical path, and most desirably they may be located between the mirrors and the specimen.

A New Series of Microscope Objectives: I. Catadioptric Newtonian Systems. By D. S. Grey and P. H. Lee, J. Opt. Soc. Am. 30: 719, September, 1949. II. Preliminary Investigation of Catadioptric Schwarzschild Systems. By D. S. Grey. J. Opt. Soc. Am. 39: 723, September, 1949.


Oil Well Logging

The intense demand for more efficient production in the oil industry has opened a relatively new field of opportunity for the physicist in applying scientific methods to logging oil wells. An oil well log is a graphical record of some phenomenon such as temperature, electric potential, radioactivity, fluid velocity, etc., as a function of depth within a bore hole. With its help one may locate casing failures, identify formations, locate the position of cement behind casings, etc.; but the most important purpose of an oil well log is to locate oil and thus establish the best point of production.

The physicist in the field will find himself confronted by most of the familiar measuring devices of the physics laboratory such as thermometers, voltmeters, ammeters, flowmeters, Geiger counters, ionization chambers, viscosimeters, etc. The student of physics will find use for a knowledge of physical principles and for mathematics through calculus and vector analysis in order to understand the theories of oil well logging. There is also much opportunity in this field for applying ingenuity in invention, research, development, and discovery.

H.J.H.

Oil Well Logging, An Opportune Field for the Physicist. By Harley J. Haden. Am. J. Phys. 17: 368, September, 1949.

November 3-5	Conference on Gaseous Electronics, Pittsburgh (sponsored by Westinghouse Electric Corporation)
November 4-5	Society of Rheology (Annual Meeting) New York City
November 7-9	Conference on Electrical Insulation, Pocono Manor, Pennsylvania
November 7-10	American Institute of Chemical Engineers, Pitts- burgh, Pennsylvania
November 10-12	Geological Society of America, El Paso, Texas
November 17-18	Dallas Geophysical Society and Fort Worth Geo- physical Society (Regional Exploration Meeting), Dallas, Texas
November 17-19	Acoustical Society of America, St. Louis, Missouri
November 23-30	International Symposium on High Altitude Biology (Sponsored by Unesco and Peruvian Government) Lima, Peru
November 25-26	American Physical Society, Chicago, Illinois
November 25-26	American Mathematical Society, Chicago, Illinois
November 26	American Mathematical Society, Pasadena, Cal.
November 27- December 2	American Society of Mechanical Engineers (Annual Meeting), New York City
November 28- December 3	Exposition of Chemical Industries, New York City
November 30- December 3	American Society for X-Ray and Electron Diffraction, Philadelphia, Pennsylvania
December 4-7	American Institute of Chemical Engineers (Annual Meeting), Pittsburgh, Pennsylvania
December 6	Society for Applied Spectroscopy, New York City
December 7	Physics Club of Philadelphia and Franklin Institute (Joint Meeting), Philadelphia, Pennsylvania
December 26-31	American Association for the Advancement of Science, New York City
December 27-30	AAAS Science Teaching Societies, New York City
January 3-6	American Meteorological Society (30th Anniversary Meeting), St. Louis, Missouri
January 31- February 1	Division of Electron Physics of American Physical Society and the Panel on Electron Tubes of the Research and Development Board of the Depart- ment of Defense, New York City
February 2-4	American Physical Society (Winter Meeting), New York City
February 15-17	Conference on Analytical Chemistry and Applied Spectroscopy (jointly sponsored by the American Chemical Society and the Spectrographic Society of Pittsburgh), Pittsburgh, Pennsylvania
February 27- March 3	American Society for Testing Materials, Pittsburgh, Pennsylvania
March 26-30	American Chemical Society, Houston, Texas
April 9-13	American Chemical Society, Philadelphia, Pennsylvania
April 16-20	American Chemical Society, Detroit, Michigan

ERRATUM: The Winter meeting of the American Society of X-Ray and Electron Diffraction was wrongly listed in previous Calendars as taking place in December in Columbus, Ohio. The correct dates are November 30th through December 3rd, at the Franklin Institute in Philadelphia, Pennsylvania, as listed above.