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The intricacies of automatic computing meth­

ods have been popularized by pictures, visual 

and verbal, of complicated wiring diagrams, 

great banks of electron tubes, and dramatic 

control boards, as well as by certain romantic 

analogies between the machines and the human 

brain. There remains, however, a need for de­

fining the limits of computing machine opera­
tion, as well as its promise. 

Sketches by Paul Bond 
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The physical sciences, notably physics and astron­

omy, have come in the past few decades to depend 

heavily upon the various devices intended to make 

the solving of mathematical problems less arduous 

and more rapid than in the days, and with the paper 

and pencil methods, of the ancients. T h e methods, 

of course, have themselves seen little change; yet 

machines capable of more and more speed in numeri­

cal computing make it possible to calculate problems 

that before would have been solved only approxi­

mately if at all. 

And as with most sudden technological advances, 

this presents pitfalls in its use: Professor Courant, 

for instance, has mentioned the folly of thinking that 

if one knows merely the elementary laws of N e w ­

tonian mechanics, and has available a sufficiently 

large computing machine, he can (or should want 

to) calculate the motion of every drop of water in 

Niagara Falls. A machine will give dull answers if 

it is asked dull questions. 

Engineering, Method, Logic 

Automatic computing methods, during the last 

decade, have developed in several directions, with 

rapid progress involving engineering principles and 

techniques, mathematical methods, and the logic of 

automatic computation. 

Quite generally there are two broad classes of 

computing machines. In one, the so-called analogue 

devices, a mathematical variable is represented by a 

physical quantity (voltage, current, angle of rotation 

of an axle, or the like) having a smooth and con­

tinuous range of variation. A n example of this class 

is the differential analyzer. In the other class are the 

digital computers, where a mathematical variable is 

represented by a set of components, in each of which 

a physical quantity can assume only discrete values; 

the values assumed in the successive components of 

the set represent the corresponding digits of the 

variable. This class includes desk calculators and 

punch card equipment. 
In what follows w e shall be primarily concerned 

with digital computers and then primarily with the 

electronic (containing vacuum tube circuits, such as 

pulse generators, binary elements, memory organs, 

etc.) rather than the mechanical (which may con­

tain electrically operated parts such as motors and 

relays). T h e development of electronic tubes and 

circuits now makes it possible to add two ten decimal-

digit numbers in five to ten microseconds or to 

multiply them together in a few hundreds of micro­

seconds. The result of this computation can then be 

stored, along with thousands of other similar num­

bers, in electrostatic storage tubes, where it will be 

available, on a few tens of microseconds' notice, for 

further computation. It is with electronic computers 

that the most startling advance in engineering prin­

ciples and techniques has been made. For a discus­

sion of computing machines the reader is referred to 

the extensive literature, and especially to the follow­

ing: A. W . Burks, Proc. I.R.E. 35, 756 (1947) ; 

F. C. Williams, T. Kilburn, Proc. I.E.E., Part III, 

96, p. 81 (1949) ; I. Auerbach, J. Eckert, R. Shaw, 
and C. Sheppard, Proc. I.R.E., 37, 855 (1949). 

The basic vacuum tube circuit used in electronic 

computers is essentially an on-off device. In conse­

quence the use of the binary rather than the con­

ventional decimal system for representing numbers 

is regarded by many as both natural and advan­

tageous. In the decimal system the digits run from 

O to 9 and are understood to be multiplied by ap­

propriate powers of 10. In the binary system, the 

digits are O and I only, and are understood to be 

multiplied by successive powers of 2. For example 

the decimal number 19 is represented in binary nota­

tion by iooii, which stands for 1(16) + 0 ( 8 ) + 

0(4) + 1(2) + 1(1). 
Such operations as multiplication and division are 

very much simplified when performed electronically 

in this system, and it is easy to convert numbers from 

one system to another, simply regarding the conver­

sion as the initial and final steps of every problem. 

Thus decimal numbers may be introduced into the 

machine, and results got out in the same form, with­

out the casual bystander ever knowing that the con­

ventional decimal system has become passe. Since the 

number of numbers that have to be so converted is 

usually very small compared to the number of cal­

culations performed, the extra trouble is negligible. 

A second stream of development in automatic com­

puting in the last decade has been in the purely 

mathematical problems of numerical computation. 

The importance of developments of this sort can be 

R. D. Richtmyer and N. C. Metropolis, theoretical physicists at the 
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using automatic computors to solve complex problems in physics. 
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and during the war was employed by the Navy Department and the 
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shown by a few examples. Every high school algebra 

student knows h o w to solve n linear equations in n 

unknowns; and if n is not greater than, say, 4 or 5, 

the solution is readily performed. If n is as large as 

50 or 100, the same methods apply in principle, but 

in practice not only is the amount of work involved 

very great, but some of the standard methods 

actually fail because of an unexpectedly disastrous 

accumulation of round-off errors, unless a prodi­

giously large number of digits is retained at each step 

of the calculation. Von N e u m a n n and Goldstine 

have analyzed this problem in detail and have in­

dicated numerical methods that are satisfactory un­

der stated circumstances. 

As a second example, the numerical solution of 

partial differential equations is frequently performed 

by assigning a certain small interval size to each of 

the independent variables, then replacing the deriva­

tives by finite-difference quotients and solving the 

resulting algebraic equations. T h e idea is here, just 

as in the familiar stepwise solution of ordinary dif­

ferential equations, that if the interval sizes are made 

small enough, the result should be a good approxima­

tion to the solution of the original differential equa­

tion. Courant, Friederichs, and L e w y showed in 

1928 that for partial differential equations this is not 

generally the case, unless certain restrictions are im­

posed on the relative interval sizes for the several 

independent variables. If these restrictions are dis­

regarded, the solution of the difference equations 

does not in general approach any limiting function 

whatever as the interval sizes tend to zero. This 

phenomenon is known as instability: research is 

continuing on the development of stable stepwise 

methods for the solution of partial differential 
equations. 

As a last example, certain partial differential and 

integro-differential equations can be solved approxi­
mately by the recently developed "Monte Carlo" 

method in cases where there are so many independent 

variables that solution by the normal stepwise 

methods would be impractical on any existing or 

contemplated machines because the number of num­

bers that would have to be stored and operated on 

increase exponentially with the number of inde­

pendent variables. 

Between these two extremes of purely technical 

and purely mathematical developments are two im­

portant fields having to do with the logical principles 

of computations. O n e concerns the internal organi­

zation of the machine itself, especially its facilities 

for executing sequences of operations automatically. 

T h e other concerns the task of reducing a problem, 

once it has been formulated in suitable terms for 

machine calculation, to a set of operating instruc­

tions that can be fed into the machine. T h e former 

has been called the problem of the intelligence of the 

mechanical computer and the latter that of com­

munication between the computer and the mathema­

tician. W e wish to discuss these two fields, especially 

the latter, at some length. 

Internal Organization: Background Coding 

O n e of the most basic advances to date in in­

ternal machine organization can be illustrated by 

reference to the eniac, built in Philadelphia and 

n o w located at the Aberdeen Proving Ground in 

Maryland. But first—all the computers w e are con­

sidering are fully automatic: once the machine has 

been properly adjusted for doing a certain calcula­

tion, supplied with the necessary constants and 

starting data on a reel of magnetic wire or a stack 

of punch cards, dial settings, or the like, and the 

"start" button pushed, the machine then proceeds 

without human intervention (barring malfunction) 

until the calculation is finished. T h e eniac is such 

a machine. Its operations are primarily electronic 

(rather than mechanical) except that numerical data 

can be fed into it from a stack of punched cards and 

the answers punched out on another stack. 
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A m o n g the various components of the eniac 

are twenty counters, each with a capacity of ten 

decimal digits and sign. Some of these counters are 

associated with the multiplying unit, others with the 

divider and square-rooter. Switches can be set man­

ually to store whatever tabular functions may be 

needed in a given problem. 

But the task of preparing the eniac (in its 

original form) to solve a particular problem turned 

out to be considerable. In each step of the sequence 

of operations two or more components of the ma­

chine would act in concert to effect the simple opera­

tions of arithmetic, the transfer of numbers from one 

part to another, the reading in of new data, etc. 

W h e n a given step was completed, an electrical im­

pulse was provided by one of the participating com­

ponents, and this signal served to stimulate the 

various members involved in the succeeding step, and 

so on. T h e signals were transmitted along trunk 

lines, to which the various components were con­

nected by short plug-in cables. T h e behavior of a 

component connected to a particular line could be 

further controlled by manual switches. 
N o w a component might be differently stimulated 

on several different occasions. T h e counters, for ex­

ample, were provided with facilities for twelve dis­

tinct modes of operation. In many ways the whole 

arrangement was similar to a telephone communica­

tion system. T h e task of figuring out the wire con­

nections for any but the simplest problems (to say 

nothing of stringing the wires, plugging them in, 

setting switches, and so forth) was a fantastic 

Chinese puzzle, and it is a tribute to the ingenuity 

and persistence of the persons connected with the 

ENIAC in those days that so much valuable work 

was done by its aid under that regime. 
About two years ago, as a result of a suggestion 

by John von Neumann, a new approach to the 

method of operating the eniac was adopted. The 

idea was to simplify the preparation of problems 

for the machine as well as to reduce the actual 

time it took to set them up on the machine. T h e 

proposal was to wire up the machine, once and 

for all, so that it could understand and execute any 

one of a list of about sixty orders or instructions. 

Then, to make the computer solve a particular prob­

lem, it was only necessary to translate the problem 

into a sequence of instructions, chosen from that list, 

and supply the machine somehow with the sequence 

of instructions. 

A n y one of the orders on the list could be used 

any desired number of times, and they could be 

used in any desired arrangement. It can be proved 

that under these circumstances the original list of 

sixty orders sufficed for performing any finite calcu­

lation. A typical order is to take the number stored 

at one location, multiply it by the number stored at 

another location, and send the product to a third 

location. Other orders have to do with shifting num­

bers to the right or left with respect to the decimal 

point, transferring them from one storage location to 

another, adding, subtracting, dividing, extracting 

square-roots, reading numbers from punch cards or 

pre-set switches, etc. T w o important orders, called 

"transfer orders," were included, whereby the ma­

chine could be made to repeat part of the sequence 

of instructions or to skip from one point in the se­

quence to another, depending on the outcome of 

calculations made up to a given point in the problem. 

With these latter orders the machine could perform 

mathematical iterations and decide which of several 

alternative procedures it should follow. Finally, the 

fact that the physical set-up remained essentially 
unchanged from problem to problem resulted in 

considerable simplification and ease in detecting mal­

functions. As a consequence the efficiency of opera­

tion increased greatly. 

T o put the above proposal into effect, it was nec­

essary to find some way of supplying the computer 

with the sequence of orders corresponding to a given 
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problem. Fortunately the eniac contained three 

components, called function tables, which possessed 

an enormous number of dial switches originally in­

tended for holding the values of tabular functions, 

like logarithms, needed in a given problem. Experi­

ence gained up to that time showed that only a small 

fraction of these switches were ever used at once, 

and it was found possible to use the remainder for 

holding orders. Each order was expressed as a two-

(in some cases four- or six-) digit number and the 

orders corresponding to any given problem could 

then be set up on these switches in sequences. 

T h e problem of arranging wire connections and 

switches so that the eniac would read the orders, 

one by one, from the function tables, interpret them, 

and execute them, was solved in collaboration with 

workers from Princeton, Aberdeen, and Los Alamos: 

this was called the "background" coding or control 

problem. 
In consequence of the background coding, to con­

tinue the anthropomorphic terminology, the ma­

chine has acquired a central nervous system and a 

vocabulary. It cannot, of course, solve any problems 
that it could not, in principle, have solved under 

the old regime, but the mathematician's problem of 

communicating with the machine has been enor­

mously simplified. 

Vocabularies 

Virtually all digital computers now being built or 

designed employ the principle of a basic vocabulary 

in terms of which problems are to be presented to 

the machine. The choice of basic vocabulary is by no 

means unique, and it is worthwhile to indicate 

briefly some of the possible variations. 

In the first place, one must decide which opera­

tions are to be regarded as fundamental, and which 

ones as derived. For example, some existing ma­

chines have built-in circuits for extracting square-

roots in response to a single order, but in other 

machines this operation must be coded by the person 

planning the problem, i.e., translated into a sub­

sequence utilizing only the basic arithmetical opera­

tions. T h e built-in circuit is, of course, more con­

venient and can be designed to operate more quickly 

and efficiently than the coded sequence, but it in­

creases substantially the complexity of the machine. 

As a further example, some machines have automatic 
provision for a "floating decimal point," whereby 

every (nonzero) number is expressed (apart from 

its sign) as a decimal in the range from o. 1000. . . 

to 0.9999... times a power of ten (manifestly a 

similar arrangement is possible for numbers in the 

binarv system) where both the decimal and the ex­

ponent of ten are stored in the machine. This simpli­

fies problems in which quantities vary over enormous 

ranges, but it complicates the basic arithmetic cir­

cuits and slows the machine down needlessly in 

most problems. Even operations like multiplication 

and division could in principle be eliminated from 

the basic vocabulary, for they can be reduced to addi­

tions and subtractions, and these latter could be re­

stricted to the addition and subtraction of one-digit 

numbers. T o pursue this subject one step further, it 

is known that all mathematics can be reduced to the 

primitive logical operations of joint denial and quan­

tification, and one mathematician has seriously sug­

gested that machines could be used in the study of 

the algebra of classes; but anyone w h o thinks that 

very much arithmetic could be done in these terms 

alone should make the experiment of taking the 

definitions of the number 1 given in W . V. Quine's 

book on Mathematical Logic, and then expressing it 

in terms of the primitive symbols for joint denial 

and quantification, by reference to the preceding 

chapters of the book. T h e result easily fills several 

pages! It is clear that it is eminently worthwhile to 

retain the compounded arithmetic operations in the 

basic vocabulary of any machine intended for serious 

work in applied mathematics. But such derived 

features as square-root extraction and the floating 

decimal point are probably just about marginal in 

their desirability for an all-purpose machine. 

PHYSICS TODAY 
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The basic vocabularies differ also in their degree 

of inflection. Just as in some languages the meaning 

of a word can be altered by adding a variable ending 

or beginning, the meaning of an order can be modi­

fied by attaching variable parts. For example, a 

basic order might read, "take the number stored at 

location. . . ., multiply it by the number stored at 

location. . . ., and send the product to location " 

The person coding the problem would then have the 

opportunity to insert in the blanks the numbers 

designating various storage locations in the machine. 

These designations are called addresses. T h e simplest 

feasible system appears to be that in which there 

is just one variable address in each order. In this 

case an order for multiplication would specify only 

the address for storing the product and would have 

to be preceded by two orders saying "take the num­

ber stored at location.... and send it to the standard 

location for the multiplier" and a similar order for 

the multiplicand. Some systems in use have as many 

as four variable addresses and other variable features 

in each order. 

Problem Formulation 

In any case it is clear that the basic operations that 

are wired into the machine will be restricted to fairly 

simple arithmetic, and this brings us to the other 

main aspect of the problem of communication be­

tween the machine and the mathematician—the art 

of formulating complex mathematical problems in 

terms of the basic vocabulary. This art is straight­

forward in one sense because all calculations in ap­

plied mathematics are in principle reducible to 

arithmetic, but it has different aspects, depending on 

how one looks at the computing machine. 
By some, the computing machine is regarded as 

roughly the equivalent (except in the matter of 

speed) of so many square feet of human computers 

equipped with paper, pencils, desk calculators, and 
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tables, and trained in elementary arithmetic. In this 

case, the task of preparing a problem consists of 

writing down a list of operations to be performed 

and indicating, after each operation, which operation 

in the list is to be performed next, or which of 

several operations is to be performed if the sequence 

depends on the results of an intermediate step. 

In problems in which there are many repeated 

routines, sub-routines, sub-sub-routines, and so forth, 

which overlap in various degress, the task of prepar­

ing this list is difficult because it means that the 

person planning the problem must be able to visualize 

the entire course of the calculation at one time and 

always keep in mind what quantities are available 

as the result of earlier operations and in what stor­

age location they are stored. This task is greatly 

simplified by use of a technique described by Burks, 

Goldstine and von Neumann in "Preliminary Dis­

cussion of the Logical Design of an Electronic Com­

puting Machine," Institute for Advanced Study, 

1946, and subsequent reports. One may draw a flow-

diagram showing graphically the course of the calcu­

lation with specially-developed notational devices 

which make it possible to keep track of the quanti­

ties in storage, the status of incomplete inductions, 
etc. 

This technique enables us to change slightly our 

point of view and suppose that the "equivalent" 

human computers can do more than carry out in­

structions on individual arithmetic operations: they 

can also remember large blocks of operations and 

perform such blocks upon receipt of single instruc-
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tions. For example, in a calculation requiring use of 

the exponential function, a sub-routine can be set up 

for calculating this function for whatever value of 

a variable is stored in a certain location. Then later, 

when the exponential function of any quantity is 

needed, this quantity is merely sent to the given loca­

tion, and an indication given to go through the said 

sub-routine. 
It can be visualized that, in a computing establish­

ment built around an automatic machine, a large col­

lection or library of such sub-routines will be ac­

cumulated, the corresponding sub-sequences of 

instructions being stored on punched paper tape, 

magnetized wire, or the like. There would be rou­

tines for computing special functions, evaluating 

integrals, solving differential equations of certain 

types, inverting matrices, etc. T h e gain can be 

likened to the development of interchangeable parts 

which eventually made possible our system of mass 

production. 

Analysis 

It is interesting to change our point of view still 

further and suppose that the "equivalent" human 

computers are capable of doing not only arithmetic, 
but also (after a certain amount of instruction) 

algebra and some kinds of higher mathematics. W e 

may illustrate what is meant here by an example that 

is admittedly (and even intentionally) somewhat 

trivial. Suppose that in a problem it is necessary to 

evaluate, for many values of a variable x, a number 

of rational algebraic functions, fractions whose 

numerators and denominators may be polynomials of 

a high degree in x. Suppose, further, it is suspected 

that there are large factors that can be cancelled out 

of numerator and denominator in each case. If the 

coefficients of the polynomials were known in ad­

vance of the problem, each fraction could be re­

duced to lowest terms, by pencil-and-paper work, 

before the numerical work of computing numerators 

and denominators begins. However, the task of re­

duction to lowest terms (e.g., by the Euclidean 

algorithm) can in any case be coded as a sub-sequence 

and performed by the machine. In a sense, then, the 

machine has ventured out of the realm of arithmetic 

into that of algebra; although, in another sense, the 

machine is merely performing certain arithmetical 

operations on the coefficients of the polynomial— 

this is, of course, just what a human algebraist 
would do. 

W e can go further, and instruct the machine 

(again by suitable sub-sequences) to differentiate 

polynomials. W e can instruct it to store, and operate 

with, functions defined by indefinite series, whose 

coefficients satisfy a recurrence relation, and so forth. 

Other operations in mathematical analysis can be 

similarly coded. 

T h e extent to which the analytic methods of 

higher mathematics, as contrasted with arithmetic, 

can be usefully incorporated into computational 

problems by machine is hardly more than a matter 

for speculation at present. But it would seem reason­

able to guess that it will be possible to think of ma­

rines as doing part of their work by analysis, in the 

not too distant future, and resorting to arithmetic 

only in the last stages of a problem. This is, of 

course, only a manner of thinking, but it may never­

theless have an important influence in the art of 

preparing problems. 

Difficulties arise, just as for humans, in handling 

functions that are implicitly defined. For example, in 

analysis, one thinks of an indefinite integral as being 

"the function whose derivative is so-and-so" and be­

cause there are no routines which can be generally 

prescribed for finding out what function this is, one 

often simply looks it up in a table of integrals. The 

machine would also have to be supplied with a table 

of integrals (this would be part of the library men­

tioned above) through which it can search in a sys­

tematic manner when integration is required. 

It is likely that before machines can be used ef­

ficiently for analytical purposes, the entire question 

of basic vocabulary will have to be re-examined and 

appropriate changes made in the basic machine opera­

tions. T h e orders or intructions n o w in use are really 
abbreviations for describing elaborate complexes of 

elementary operations, such as the steps involved in 
multiplying 635 X 20094. These complexes are 

highly efficient only in arithmetic, and it seems clear 

that other complexes will be needed for other work. 

Practical Use of Machines 

Nothing in the foregoing should be construed as 

meaning that it will soon be possible for mathe­

matical physicists to dispense with thinking their 

problems through in more or less complete detail. In 

fact it becomes even more necessary to do this for 

machines than with human computers, w h o take a 

long enough time at their work so that the supervisor 

can develop and alter the methods used from time to 
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time as the calculation progresses. In machine work 

one should cross all one's bridges before the calcula­

tion starts and have the complete strategy mapped 

out from the beginning. Automatic calculation is 

profitable at present only when all the operations, 

whether numerical or analytic, have been thoroughly 
worked out and tested in special cases. T h e function 

of the machine is to apply the same methods to a 

large number of similar cases. However with the 

advent of newer and more flexible computers in 

the laboratory and the ease contemplated in changing 

from one problem to another, it is not difficult to 

imagine that they will become a very useful experi­

mental tool for testing methods as well as theories. 

Thus one can indeed make trial runs, relinquish the 

computer to the next person, and return to it after 

a period of examination and meditation. 

In principle it might seem feasible to instruct a 

machine to solve problems of the following sort: 

given a complicated analytic expression and a cer­

tain differential equation, the question is: "does the 

given expression satisfy the given equation ? Answer 

'yes' or 'no'!" But in all such cases that one can 

readily think of, the labor involved in planning the 

machine calculation would seem to be greater than 

that of solving the problem by hand. At the other 
extreme one must avoid the temptation of thinking 

that fundamental progress can be made by the mere 

mass-production of numbers. 
Probably the greatest promise for machines lies 

in those fields of physics, astronomy, chemistry, 

meteorology, etc. where the fundamental principles 

are well known but where their application to cer­

tain basic problems is beset with severe mathematical 

difficulties. T h e classical problem of this sort is of 

course the many-body problem of celestial mechanics. 

Other examples are the application of quantum 

mechanics to atomic and molecular structure, the 

dynamics of simple chemical reactions, properties of 

crystals, liquids, gases, and to low-temperature phe­

nomena ; applications of fluid dynamics to problems 
of turbulence and supersonic flow; applications of 

quantum physics to the problem of radiative trans­

port in stars and the complex problems of stellar at­

mospheres ; applications of mechanics, thermody­

namics, and electromagnetism to problems in the 

dynamics of stars, especially variable stars and stellar 

models; calculation of particle orbits in proposed 

designs of high-energy accelerators for nuclear work : 

ray tracing in optical systems; the prediction of the 

properties of nuclear reactors; etc. 

Applications to mathematics itself are perhaps not 

likely to be too numerous. But one problem which 

was put on the eniac involved searching through 

the integers, i, 2, 3, 4, ... , for integers having 

certain very rare properties of interest in number 

theory. It has been suggested that Riemann's con­

jecture concerning the zeros of the zeta function be 

put to test by detailed calculation of numerical 

values of this function in certain regions of the com­

plex plane. In connection with mathematical prob­

lems one often hears the remark that you can never 

"prove" anything by mere calculation. As note! 

above, this is by no means true, although the fact 

probably remains that if one could prove a theorem 
by a machine one could in most cases prove it more 

easily without the machine, and this is likely to be 

a fundamental deterrent to most uses of machines in 

pure mathematics. 
T h e most interesting applications in applied 

mathematics are likely to be those in which one does 

more than merely calculate with greater accuracy 
some already roughly-known result, and in which 

there is at least a possibility of surprise by way of 

basic new trends emerging, or in which one is ex­

ploring the properties of assumed models of pfrysical, 

astronomical, chemical, or even perhaps biological 

systems. By their very nature, these applications are 

not easy to foresee, and perhaps, therefore, this is 

the point at which this discussion should close. 
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