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S, The intricacies of automatic computing meth-
< ods have been popularized by pictures, visual
v and verbal, of complicated wiring diagrams,
7 great banks of electron tubes, and dramatic
o control boards, as well as by certain romantic
, analogies between the machines and the human
) brain. There remains, however, a need for de-
¢ fining the limits of computing machine opera-
2 tion, as well as its promise.
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The physical sciences, notably physics and astron-
omy, have come in the past few decades to depend
heavily upon the various devices intended to make
the solving of mathematical problems less arduous
and more rapid than in the days, and with the paper
and pencil methods, of the ancients. The methods,
of course, have themselves seen little change; yet
machines capable of more and more speed in numeri-
cal computing make it possible to calculate problems
that before would have been solved only approxi-
mately if at all.

And as with most sudden technological advances,
this presents pitfalls in its use: Professor Courant,
for instance, has mentioned the folly of thinking that
if one knows merely the elementary laws of New-
tonian mechanics, and has available a sufficiently
large computing machine, he can (or should want
to) calculate the motion of every drop of water in
Niagara Falls. A machine will give dull answers if
it is asked dull questions.

Engineering, Method, Logic

Automatic computing methods, during the last
decade, have developed in several directions, with
rapid progress involving engineering principles and
techniques, mathematical methods, and the logic of
automatic computation.

Quite generally there are two broad classes of
computing machines. In one, the so-called analogue
devices, a mathematical variable is represented by a
physical quantity (voltage, current, angle of rotation
of an axle, or the like) having a smooth and con-
tinuous range of variation. An example of this class
is the differential analyzer. In the other class are the
digital computers, where a mathematical variable is
represented by a set of components, in each of which
a physical quantity can assume only discrete values;
the values assumed in the successive components of
the set represent the corresponding digits of the
variable, This class includes desk calculators and
punch card equipment.

In what follows we shall be primarily concerned
with digital computers and then primarily with the
electronic (containing vacuum tube circuits, such as
pulse generators, binary elements, memory organs,
etc.) rather than the mechanical (which may con-
tain electrically operated parts such as motors and
relays). The development of electronic tubes and
circuits now makes it possible to add two ten decimal-
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digit numbers in five to ten microseconds or to
multiply them together in a few hundreds of micro-
seconds. The result of this computation can then be
stored, along with thousands of other similar num-
bers, in electrostatic storage tubes, where it will be
available, on a few tens of microseconds’ notice, for
further computation. It is with electronic computers
that the most startling advance in engineering prin-
ciples and techniques has been made. For a discus-
sion of computing machines the reader is referred to
the extensive literature, and especially to the follow-
ing: A. W. Burks, Proc. I.R.E. 35, 756 (1947);
F. C, Williams, T, Kilburn, Proc. LE.E., Part 111,
96, p. 81 (1949) ; I. Auerbach, J. Eckert, R. Shaw,
and C. Sheppard, Proc. LR.E., 37, 855 (1949).

The basic vacuum tube circuit used in electronic
computers is essentially an on-off device. In conse-
quence the use of the binary rather than the con-
ventional decimal system for representing numbers
is regarded by many as both natural and advan-
tageous. In the decimal system the digits run from
0 to 9 and are understood to be multiplied by ap-
propriate powers of 10, In the binary system, the
digits are 0 and 1 only, and are understood to be
multiplied by successive powers of 2. For example
the decimal number 19 is represented in binary nota-
tion by 1oo11, which stands for 1(16) + o(8) +
o(4) + (2) + 2(1).

Such operations as multiplication and division are
very much simplified when performed electronically
in this system, and it is easy to convert numbers from
one system to another, simply regarding the conver-
sion as the initial and final steps of every problem.
Thus decimal numbers may be introduced into the
machine, and results got out in the same form, with-
out the casual bystander ever knowing that the con-
ventional decimal system has become passé. Since the
number of numbers that have to be so converted is
usually very small compared to the number of cal-
culations performed, the extra trouble is negligible.

A second stream of development in automatic com-
puting in the last decade has been in the purely
mathematical problems of numerical computation.
The importance of developments of this sort can be
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shown by a few examples. Every high school algebra
student knows how to solve » linear equations in n
unknowns; and if » is not greater than, say, 4 or 5,
the solution is readily performed. If » is as large as
50 or 100, the same methods apply in principle, but
in practice not only is the amount of work involved
great, but of the standard methods
actually fail because of an unexpectedly disastrous
accumulation of round-off errors, unless a prodi-
giously large number of digits is retained at each step
of the calculation. Von Neumann and Goldstine
have analyzed this problem in detail and have in-
dicated numerical methods that are satisfactory un-
der stated circumstances.

YEery some

As a second example, the numerical solution of
partial differential equations is frequently performed
by assigning a certain small interval size to each of
the independent variables, then replacing the deriva-
tives by finite-difference quotients and solving the
resulting algebraic equations. The idea is here, just
as in the familiar stepwise solution of ordinary dif-
ferential equations, that if the interval sizes are made
small enough, the result should be a good approxima-
tion to the solution of the original differential equa-
tion. Courant, Friederichs, and Lewy showed in
1928 that for partial differential equations this is not
generally the case, unless certain restrictions are im-
posed on the relative interval sizes for the several
independent variables, If these restrictions are dis-
regarded, the solution of the difference equations
does not in general approach any limiting function
whatever as the interval sizes tend to zero. This
phenomenon is known as instability: research is
continuing on the development of stable stepwise
methods for the solution of partial differential
equations.

As a last example, certain partial differential and
integro-differential equations can be solved approxi-
mately by the recently developed “Monte Carlo”
method in cases where there are so many independent
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variables that solution by the normal stepwise
methods would be impractical on any existing or
contemplated machines because the number of num-
bers that would have to be stored and operated on
increase exponentially with the number of inde-
pendent variables.

Between these two extremes of purely technical
and purely mathematical developments are two im-
portant fields having to do with the logical principles
of computations. One concerns the internal organi-
zation of the machine itself, especially its facilities
for executing sequences of operations automatically.
The other concerns the task of reducing a problem,
once it has been formulated in suitable terms for
machine calculation, to a set of operating instruc-
tions that can be fed into the machine. The former
has been called the problem of the intelligence of the
mechanical computer and the latter that of com-
munication between the computer and the mathema-
tician. We wish to discuss these two fields, especially
the latter, at some length.

Internal Organization: Background Coding

One of the most basic advances to date in in-
ternal machine organization can be illustrated by
reference to the Eniac, built in Philadelphia and
now located at the Aberdeen Proving Ground in
Marvland. But first—all the computers we are con-
sidering are fully automatic: once the machine has
been properly adjusted for doing a certain calcula-
tion, supplied with the necessary constants and
starting data on a reel of magnetic wire or a stack
of punch cards, dial settings, or the like, and the
“start” button pushed, the machine then proceeds
without human intervention (barring malfunction)
until the calculation is finished. The Enxiac is such
a machine. Its operations are primarily electronic
(rather than mechanical) except that numerical data
can be fed into it from a stack of punched cards and
the answers punched out on another stack.
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Among the various components of the ENIAC
are twenty counters, each with a capacity of ten
decimal digits and sign, Some of these counters are
associated with the multiplying unit, others with the
divider and square-rooter. Switches can be set man-
ually to store whatever tabular functions may be
needed in a given problem,

But the task of preparing the ENiac (in its
original form) to solve a particular problem turned
out to be considerable, In each step of the sequence
of operations two or more components of the ma-
chine would act in concert to effect the simple opera-
tions of arithmetic, the transfer of numbers from one
part to another, the reading in of new data, etc.
When a given step was completed, an electrical im-
pulse was provided by one of the participating com-
ponents, and this signal served to stimulate the
various members involved in the succeeding step, and
so on. The signals were transmitted along trunk
lines, to which the various components were con-
nected by short plug-in cables. The behavior of a
component connected to a particular line could be
further controlled by manual switches.

Now a component might be differently stimulated
on several different occasions, The counters, for ex-
ample, were provided with facilities for twelve dis-
tinct modes of operation. In many ways the whole
arrangement was similar to a telephone communica-
tion system, The task of figuring out the wire con-
nections for any but the simplest problems (to say
nothing of stringing the wires, plugging them in,
setting switches, and so forth) was a fantastic
Chinese puzzle, and it is a tribute to the ingenuity
and persistence of the persons connected with the
ENIAC in those days that so much valuable work
was done by its aid under that regime,

About two years ago, as a result of a suggestion
by John von Neumann, a new approach to the
method of operating the ENtAC was adopted. The
idea was to simplify the preparation of problems
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for the machine as well as to reduce the actual
time it took to set them up on the machine. The
proposal was to wire up the machine, once and
for all, so that it could understand and execute any
one of a list of about sixty orders or instructions.
Then, to make the computer solve a particular prob-
lem, it was only necessary to translate the problem
Into a sequence of instructions, chosen from that list,
and supply the machine somehow with the sequence
of Instructions,

Any one of the orders on the list could be used
any desired number of times, and they could be
used in any desired arrangement. It can be proved
that under these circumstances the original list of
sixty orders sufficed for performing any finite calcu-
lation. A typical order is to take the number stored
at one location, multiply it by the number stored at
another location, and send the product to a third
location. Other orders have to do with shifting num-
bers to the right or left with respect to the decimal
point, transferring them from one storage location to
another, adding, subtracting, dividing, extracting
square-roots, reading numbers from punch cards or
pre-set switches, etc, Two important orders, called
“transfer orders,” were included, whereby the ma-
chine could be made to repeat part of the sequence
of instructions or to skip from one point in the se-
quence to another, depending on the outcome of
caleulations made up to a given point in the problem.
With these latter orders the machine could perform
mathematical iterations and decide which of several
alternative procedures it should follow. Finally, the
fact that the physical set-up remained essentially
unchanged from problem to problem resulted in
considerable simplification and ease in detecting mal-
functions. As a consequence the efficiency of opera-
tion increased greatly.

To put the above proposal into effect, it was nec-
essary to find some way of supplying the computer
with the sequence of orders corresponding to a given
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problem. Fortunately the EN1ac contained three
components, called function tables, which possessed
an enormous number of dial switches originally in-
tended for holding the values of tabular functions,
like logarithms, needed in a given problem. Experi-
ence gained up to that time showed that only a small
fraction of these switches were ever used at once,
and it was found possible to use the remainder for
holding orders. Each order was expressed as a two-
(in some cases four- or six-) digit number and the
orders corresponding to any given problem could
then be set up on these switches in sequences.

The problem of arranging wire connections and
switches so that the Eniac would read the orders,
one by one, from the function tables, interpret them,
and execute them, was solved in collaboration with
workers from Princeton, Aberdeen, and Los Alamos:
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this was called the “background” coding or control
problem.

In consequence of the background coding. to con-
tinue the anthropomorphic terminology, the ma-
chine has acquired a central nervous system and a
vocabulary. It cannot, of course, solve any problems
that it could not, in principle, have solved under
the old regime, but the mathematician’s problem of
communicating with the machine has been enor-
mously simplified.

Vocabularies

Virtually all digital computers now being built or
designed employ the principle of a basic vocabulary
in terms of which problems are to be presented to
the machine. The choice of basic vocabulary is by no

means unique, and it is worthwhile to indicate
briefly some of the possible variations.

In the first place, one must decide which opera-
tions are to be regarded as fundamental, and which
ones as derived. For example, some existing ma-
chines have built-in circuits for extracting square-
roots in response to a single order, but in other
machines this operation must be coded by the person
planning the problem, i.e., translated into a sub-
sequence utilizing only the basic arithmetical opera-
tions. The built-in circuit is, of course, more con-
venient and can be designed to operate more quickly
and efficiently than the coded sequence, but it in-
creases substantially the complexity of the machine.
As a further example, some machines have automatic
provision for a “floating decimal point,” whereby
every (nonzero) number is expressed (apart from
its sign) as a decimal in the range from o.1000. ..
to 0.9999... times a power of ten (manifestly a
similar arrangement is possible for numbers in the
binary system) where both the decimal and the ex-
ponent of ten are stored in the machine. This simpli-
fies problems in which quantities vary over enormous
ranges, but it complicates the basic arithmetic cir-
cuits and slows the machine down needlessly in
most problems, Even operations like multiplication
and division could in principle be eliminated from
the basic vocabulary, for they can be reduced to addi-
tions and subtractions, and these latter could be re-
stricted to the addition and subtraction of one-digit
numbers. To pursue this subject one step further, it
is known that all mathematics can be reduced to the
primitive logical operations of joint denial and quan-
tification, and one mathematician has seriously sug-
gested that machines could be used in the study of
the algebra of classes; but anyone who thinks that
very much arithmetic could te done in these terms
alone should make the experiment of taking the
definitions of the number 1 given in W. V. Quine's
book on Mathematical Logic, and then expressing it
in terms of the primitive symbols for joint denial
and quantification, by reference to the preceding
chapters of the book. The result easily fills several
pages! It is clear that it is eminently worthwhile to
retain the compounded arithmetic operations in the
basic vocabulary of any machine intended for serious
work in applied mathematics. But such derived
features as square-root extraction and the floating
decimal point are probably just about marginal in
their desirability for an all-purpose machine.
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The basic vocabularies differ also in their degree
of inflection. Just as in some languages the meaning
of a word can be altered by adding a variable ending
or beginning, the meaning of an order can be modi-
fied by attaching variable parts. For example, a
basic order might read, “take the number stored at
location. ..., multiply it by the number stored at
location. . . ., and send the product to location.....”
The person coding the problem would then have the
opportunity to insert in the blanks the numbers
designating various storage locations in the machine.
These designations are called addresses. The simplest
feasible system appears to be that in which there
is just one variable address in each order. In this
case an order for multiplication would specify only
the address for storing the product and would have
to be preceded by two orders saving “take the num-
ber stored at location. . . . and send it to the standard
location for the multiplier” and a similar order for
the multiplicand. Some systems in use have as many
as four variable addresses and other variable features
in each order.

Problem Formulation

In any case it is clear that the basic operations that
are wired into the machine will be restricted to fairly
simple arithmetic, and this brings us to the other
main aspect of the problem of communication be-
tween the machine and the mathematician—the art
of formulating complex mathematical problems in
terms of the basic vocabulary. This art is straight-
forward in one sense because all calculations in ap-
plied mathematics are in principle reducible to
arithmetic, but it has different aspects, depending on
how one looks at the computing machine,

By some, the computing machine is regarded as
roughly the equivalent (except in the matter of
speed) of so many square feet of human computers
equipped with paper, pencils, desk calculators, and
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tables, and trained in elementary arithmetic. In this
case, the task of preparing a problem consists of
writing down a list of operations to be performed
and indicating, after each operation, which operation
in the list is to be performed next, or which of
several operations is to be performed if the sequence
depends on the results of an intermediate step.

In problems in which there are many repeated
routines, sub-routines, sub-sub-routines, and so forth,
which overlap in various degress, the task of prepar-
ing this list is difficult because it means that the
person planning the problem must be able to visualize
the entire course of the calculation at one time and
always keep in mind what quantities are available
as the result of earlier operations and in what stor-
age location they are stored. This task is greatly
simplified by use of a technique described by Burks,
Goldstine and von Neumann in “Preliminary Dis-
cussion of the Logical Design of an Electronic Com-
puting Machine,” Institute for Advanced Study,
1946, and subsequent reports, One may draw a flow-
diagram showing graphically the course of the calcu-
lation with specially-developed notational devices
which make it possible to keep track of the quanti-
ties in storage, the status of incomplete inductions,
eftc.

This technique enables us to change slightly our
point of view and suppose that the “equivalent’
human computers can do more than carry out in-
structions on individual arithmetic operations: they
can also remember large blocks of operations and
perform such blocks upon receipt of single instruc-
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tions, For example, in a calculation requiring use of
the exponential function, a sub-routine can be set up
for calculating this function for whatever value of
a variable is stored in a certain location. Then later,
when the exponential function of any quantity is
needed, this quantity is merely sent to the given loca-
tion, and an indication given to go through the said
sub-routine.

It can be visualized that, in a computing establish-
ment built around an automatic machine, a large col-
lection or library of such sub-routines will be ac-
cumulated, the corresponding
instructions being stored on punched paper tape,
magnetized wire, or the like. There would be rou-
tines for computing special functions, evaluating
integrals, solving differential equations of certain
types, inverting matrices, etc. The gain can be
likened to the development of interchangeable parts
which eventually made possible our system of mass
production.

sub-sequences of

Analysis

It is interesting to change our point of view still
further and suppose that the “equivalent” human
computers are capable of doing not only arithmetic,
but also (after a certain amount of instruction)
algebra and some kinds of higher mathematics. We
may illustrate what is meant here by an example that
is admittedly (and even intentionally) somewhat
trivial. Suppose that in a problem it is necessary to
evaluate, for many values of a variable x, 2 number
of rational algebraic functions, fractions whose
numerators and denominators may be polynomials of
a high degree in x. Suppose, further, it is suspected
that there are large factors that can be cancelled out
of numerator and denominator in each case. [f the
coeflicients of the polynomials were known in ad-
vance of the problem, each fraction could be re-
duced to lowest terms, by pencil-and-paper work,
before the numerical work of computing numerators
and denominators begins. However, the task of re-
duction to lowest terms (e.g., by the Euclidean
algorithm) can in any case be coded as a sub-sequence
and performed by the machine, In a sense, then, the
machine has ventured out of the realm of arithmetic
into that of algebra; although, in another sense, the
machine is merely performing certain arithmetical
operations on the coefficients of the polynomial—
this is, of course, just what a human algebraist
would do.

We can go further, and instruct the machine
(again by suitable sub-sequences) to differentiate
polynomials. We can instruct it to store, and operate
with, functions defined by indefinite series, whose
coeficients satisfy a recurrence relation, and so forth,
Other operations in mathematical analysis can be
similarly coded.

The extent to which the analytic methods of
higher mathematics, as contrasted with arithmetic,
can be usefully incorporated into computational
problems by machine is hardly more than a matter
for speculation at present, But it would seem reason-
able to guess that it will be possible to think of ma-
cines as doing part of their work by analysis, in the
not too distant future, and resorting to arithmetic
only in the last stages of a problem. This is, of
course, only a manner of thinking, but it may never-
theless have an important influence in the art of
preparing problems.

Difficulties arise, just as for humans, in handling
functions that are implicitly defined. For example, in
analysis, one thinks of an indefinite integral as being
“the function whose derivative is so-and-so” and be-
cause there are no routines which can be generally
prescribed for finding out what function this is, one
often simply looks it up in a table of integrals, The
machine would also have to be supplied with a table
of integrals (this would be part of the library men-
tioned above) through which it can search in a sys-
tematic manner when integration is required.

It is likely that before machines can be used ef-
ficiently for analvtical purposes, the entire question
of basic vocabulary will have to be re-examined and
appropriate changes made in the basic machine opera-
tions. The orders or intructions now in use are really
abbreviations for describing elaborate complexes of
elementary operations, such as the steps involved in
multiplying 635 % 20004. These complexes are
highly efficient only in arithmetic, and it seems clear
that other complexes will be needed for other work.

Practical Use of Machines

Nothing in the foregoing should be construed as
meaning that it will soon be possible for mathe-
matical physicists to dispense with thinking their
problems through in more or less complete detail. In
fact it becomes even more necessary to do this for
machines than with human computers, who take a
long enough time at their work so that the supervisor
can develop and alter the methods used from time to

PHYSICS TODAY



time as the calculation progresses. In machine work
one should cross all one's bridges before the calcula-
tion starts and have the complete strategy mapped
out from the beginning. Automatic calculation is
profitable at present only when all the operations,
whether numerical or analytic, have been thoroughly
worked out and tested in special cases. The function
of the machine is to apply the same methods to a
large number of similar cases. However with the
advent of newer and more fexible computers in
the laboratory and the ease contemplated in changing
from one problem to another, it is not difficult to
imagine that they will become a very useful experi-
mental tool for testing methods as well as theories.
Thus one can indeed make trial runs, relinquish the
computer to the next person, and return to it after
a period of examination and meditation.

In principle it might seem feasible to instruct a
machine to solve problems of the following sort:
given a complicated analytic expression and a cer-
tain differential equation, the question is: “does the
given expression satisfy the given equation? Answer
‘yes' or ‘no’!"”
readily think of, the labor involved in planning the
machine calculation would seem to be greater than
that of solving the problem by hand. At the other
extreme one must avoid the temptation of thinking

But in all such cases that one can

that fundamental progress can be made by the mere
mass-production of numbers.

Probably the greatest promise for machines lies
in those fields of physics, astronomy, chemistry,
meteorology, etc. where the fundamental principles
are well known but where their application to cer-
tain basic problems is beset with severe mathematical
difficulties. The classical problem of this sort is of
course the many-body problem of celestial mechanics.
Other examples are the application of guantum
mechanics to atomic and molecular structure, the
dynamics of simple chemical reactions, properties of
crystals, liquids, gases, and to low-temperature phe-
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nomena; applications of fluid dynamics to problems
of turbulence and supersonic How; applications of
quantum physics to the problem of radiative trans-
port in stars and the complex problems of stellar at-
mospheres; applications of mechanics, thermody-
namics, and electromagnetism to problems in the
dynamics of stars, especially variable stars and stellar
models; calculation of particle orbits in proposed
designs of high-energy accelerators for nuclear work :
ray tracing in optical systems; the prediction of the
properties of nuclear reactors; etc.

Applications to mathematics itself are perhaps not
likely to be too numerous, But one problem which
was put on the ENIAC involved searching through
the integers, 1, 2, 3, 4, . . . , for integers having
certain very rare properties of interest in number
theory, It has been suggested that Riemann's con-
jecture concerning the zeros of the zeta function be
put to test by detailed calculation of numerical
values of this function in certain regions of the com-
plex plane. In connection with mathematical prob-
lems one often hears the remark that you can never
“prove”’ anything by mere calculation. As notel
above, this is by no means true, although the fact
probably remains that if one could prove a theorem
by a machine one could in most cases prove it more
easily without the machine, and this is likely to be
a fundamental deterrent to most uses of machines in
pure mathematics.

The most interesting applications in applied
mathematics are likely to be those in which one does
more than merely calculate with greater accuracy
some already roughly-known result, and in which
there is at least a possibility of surprise by way of
basic new trends emerging, or in which one is ex-
ploring the properties of assumed models of physical,
astronomical, chemical, or even perhaps biological
svstems. By their very nature, these applications are
not easy to foresee, and perhaps, therefore, this is
the point at which this discussion should close.




