BASIC AXIOMS OF MICROPHYSICS

NEW FOUNDATIONS OF QUANTUM MECHANICS. By Alfred Landé. 171 pp. Cambridge University Press, London, 1965. \$7.50.

by Abner Shimony

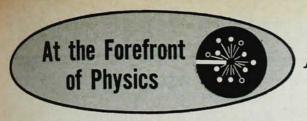
Professor Landé's aim is the demystification of quantum mechanics. He does not modify the usual formalism of the theory, but he gives it an interpretation which dispenses with such counterintuitive concepts as wave-particle dualism. Moreover, he claims to derive quantum mechanics from a few general nonquantal principles. Discussions and reviews of Landé's earlier books, Foundations of Quantum Theory (Yale U. Press, New Haven, 1955) and From Dualism to Unity in Quantum Physics (Cambridge U. Press, London, 1960), in which essentially the same arguments were presented as in the present work, have largely been concerned with his interpretation, and none that I have read has been sufficiently critical in assessing his derivations. Several reviewers and commentators have stated (sometimes with astonishment) that all or several of his derivations of quantum mechanical laws from very weak assumptions are correct.1 I find, however, that this is not so, and that there are ambiguities in his premises and errors in his arguments.

First of all, Landé maintains, "Unpredictability, denoted as acausality of individual events, must be accepted as an irreducible feature of natural science" (page 37), and he asserts his agreement with the statement by C. S. Peirce, "You think that all the arbitrary specifications of the universe were introduced in one dose in the beginning, if there was a beginning. But I for my part think that the diversification, the specification has been continually taking place" (quoted on page 36). This doctrine of absolute chance is logically consistent and in some ways is attractive, but Landé's argument that it can be inferred from such macroscopic phenomena as games of chance is very weak. It is true that ergodic theory is far from complete, and yet there is a large class of systems for which it is known that the physically significant quantities have the same statistical distributions along almost all trajectories, thereby providing an explanation of statistical behavior without postulating "a deus ex machina who at one remote time has introduced statistical disorder which then is passed on deterministically" (page 36.) Also, it is possible to base games of chance upon the decimal expansion of irrational numbers, in spite of the fact that the "events" (that is, the digits in the expansion) are determined once the "initial condition" (choice of the number) has been specified. Landé's position on acausality is obscured, moreover, by his proposition that "Unpredictability of future events does not preclude the reconstruction of individual causes on the grounds of deterministic theory" (page 37).

Next, Landé postulates a principle of cause-effect continuity, or, rather (because of his commitment to acausality), a statistical principle that an infinitesimal change of initial conditions cannot produce a finite change in resulting statistical distributions. This seems to be a reasonable heuristic principle, which could conceivably be abandoned on account of

adverse evidence but not without regret, and it certainly is interesting to see what consequences can be drawn from it. Landé attempts to derive from it a recognizably quantum mechanical proposition about atomic states. He supposes the existence of a filter which permits all atoms of a given species in state A to pass while rejecting atoms of this species in other states \overline{A} , and he then says

"It could have been expected from the continuity principle, and it is indeed confirmed by experience, that there is a third class of states intermediate between A and \overline{A} , between always passed and never passed, namely states B which are sometimes passed and at other times are repelled by the A-passing filter. . . . The states B then can neither be regarded as equal to A, nor as entirely unequal, that is as 100 per cent separable from A" (page 41). This argument is unclear, however, unless the relation between the terms "state" and "filter" is made unambiguous. In view of Landé's discussion of separators (page 53) and of his intention to develop the full formalism of quantum mechanics, it is reasonable to assume that he would accept a statement like the following: the Apassing filter defines a state A if the filter is constructible by blocking all but one component of a maximal separator-a separator being an instrument through some component of which any atom of a given species will pass, and with the property that an atom which passes through one component will again pass through it and through no other, and a maximal separator being one which loses the property of being a separator if any of its components are subdivided. By assuming the existence of the state A, Landé is in effect assuming the existence of at least one maximal separator, and then he uses the principle of continuity to infer that there exists more than one. But an alternative way of satisfying the continuity principle would be to deny the existence of any maximal separator-to suppose, for example, that once a particle passed through a given component it would indeed have very small probability on a second trial of passing through a component which is remote (in some suitable ordering) from the first one, but a large probability of passing through one of those components close to it. Were it not for quantum theory and the empirical evidence for the superposition of states, the alternative way of satisfying the continuity principle would be overwhelmingly more plausible Landé's way.


Landé then attempts to justify the symmetry postulate $P(A \rightarrow B) = P(B \rightarrow A)$, where $P(A \rightarrow B)$ is the fraction of atoms in the state A which pass through a B-filter, and $P(B \rightarrow A)$ is analogous. Four arguments are given. The first is that

"we define the fractional degree of equality between A and B as the statistical passing fraction of B-state atoms through an A-filter. However, since the equality concept is mutual . . . , this definition of fractional equality makes sense only when B-state atoms pass through, an A-filter with the same probability as A-state atoms pass through a B-filter" (page 41).

But in this argument the use of the term "fractional equality" clearly begs the question. The second argument is that the symmetry postulate "is the statistical counterpart to the reversibility of processes in classical mechanics" (page 41). The analogy is dubious because reversibility in classical mechanics depends upon the dynamics, and at this point Landé has not yet developed quantum dynamics; and also because classical reversibility holds only for an entire isolated system, whereas in the present situation the atoms interact with the filters, the modifications of which (though small on a macroscopic scale) are not taken into account. Even if the analogy were apt, however, reliance upon it would not be justified since classical mechanics is, strictly speaking, a false theory. A third argument, "Without P-symmetry there could not be any statistical equilibrium" (page 151), is

too elliptical to evaluate with assurance. However, he may mean by "statistical equilibrium" a distribution among the states separated by one separator such that if all the atoms are passed through any second separator and then again through the first, the initial distribution is recovered; if so, then equilibrium can be maintained by a suitable global system of transition probabilities, without Psymmetry. The fourth argument is based on the evaluation of the entropy produced when a gas of N atoms in state A and occupying volume V and a gas of N atoms in state B and occupying volume V are allowed to diffuse into a common volume 2V. Landé proposes to evaluate the entropy in one way by separating the mixture adiabatically and isothermally using an A filter as a semipermeable membrane, and in another way by similarly using a B-filter. The entropies of the separated systems in the two cases are equal only if $P(A \rightarrow B) = P(B \rightarrow A)$. From this Landé concludes that the symmetry principle is necessary "in order to render a univalent diffusion entropy irrespective of whether its value is determined by means of A- or B-filters" (page 68). But since in general the separation process increases entropy, as he later notes, this argument is inconclusive unless supplemented by an argument that the entropy changes caused by A-filtering and B-filtering are equal (an equality which he assumes without proof on page 20 of Foundations of Quantum Theory but does not mention at all in the present work).

The most important step in Lande's entire derivation is his attempt to exhibit the necessity for probability amplitudes, thereby explaining the interference phenomena of quantum mechanics. He postulates that there must be a law of interdependence "which determines, or at least restricts" the matrix of transition probabilities P_{AC} when P_{AB} and P_{BC} are given, where A, B, and C, now denote maximal separators, and the ijth element of P_{AB} is the transition probability $P(A_i \rightarrow B_i)$ from the ith state associated with A to the jth state associated with B, etc. He expresses the law governing the matrices of transition probabilities by " $F(P_{AB}, P_{BC}, P_{AC}) = 0$, or still shorter as f(A, B, C) = 0," and he imposes the two requirements of symmetry and transitivity: that is, "the same connection ought to hold also for any permutation of the letters A,B,C" (page 79), and "The interdependence ought to hold for all letter combinations so that from f(A, B, C). f(A, B, D), f(A, C, D) = 0 should follow f(B, C, D) = 0 by elimination of A" (pages 79-80). I find the second of these requirements puzzling, since I do not see how it can be construed so as to be satisfied by the transition probability matrices of quantum mechanics (although the matrices of probability amplitudes are easily seen to satisfy it). Landé then claims that the only law of interdependence among matrices of transition probabilities (the elements of which must be nonnegative real numbers such that the sum along any row or column is 1) which satisfies these requirements and which also is compatible with $P(A_i \rightarrow A_i)$ $B_i = P(B_i \rightarrow A_i)$ and with $P(A_i \rightarrow A_k)$ = δ_{ik} is the familiar quantum mechanical relation: that the transition probabilities are the absolute squares of amplitudes $\alpha(A_i, B_i)$ constituting unitary matrices α_{AB} , etc., for which $\alpha_{AC} = \alpha_{AB} \alpha_{BC}$ is valid. The proof (Appendix I) rests upon an assumption which is not among Landé's explicit postulates and for which I can see no justification: that P_{AB} , P_{BC} , P_{AC} are determined by a set of matrices which satisfy some polynomial matrix equation. It is easy to give a set of transition probability matrices which satisfy a nonquantum mechanical law of interdependence and also seem to satisfy all of Landé's explicit postulates (so far as I understand them). For instance, if $0 \le r < 2\pi/n$. let the separator Ar distribute particles confined to the circumference of a circle into n"states", the "state" Akr being that of lying in the angular interval [r + $2\pi(k-1)/n$, $r + 2\pi k/n$, and let $P(A_i^r)$ $\rightarrow A_i^{(8)}$ be $\pi/2$ times the magnitude of the intersection of the two angular intervals involved. This example has the virtue that the matrices $P_A^{\ r}_{A}^{\ s}$, $P_A^{\ s}_{A}^{\ t}$ determine $P_{A}^{r}{}_{A}^{t}$, whereas in quantum mechanics the matrices of transition probabilities P_{AB} and P_{BC} only restricts PAC. The matrices in this example do not satisfy a polynomial

Advanced Texts From McGraw-Hill

CRYSTALLIZATION OF POLYMERS.

By LEO MANDELKERN, Florida State University.

This definitive volume reviews and critically examines current knowledge of the phenomena of crystallization of polymers. It considers all classes and types of macromolecules through the basic disciplines of chemistry and physics, emphasizing fundamental concepts. The book discusses thermodynamic and morphological changes that occur when a collection of molecules of very high molecular weight is transformed from one state to another. Using a unified approach, it treats synthetic polymers as well as naturally occurring ones of biological interest and importance.

230 pp., \$14.50.

INSULATORS, SEMICONDUCTORS, AND METALS: Volume III of Quantum Theory of Molecules and Solids Series.

By JOHN C. SLATER, University of Florida, and Massachusetts Institute of Technology.

This third volume of an outstanding series on the quantum theory of molecules and solids is phenomenological in essence. In scope it deals with the ideas of lattice vibrations, X-ray scattering, optical properties of solids and other important problems which cover the experimental aspects of solids.

Winter.

Others in this series are: Vol. I, Electronic Structure of Molecules; Vol. II, Symmetry and Energy Bands in Crystals.

PLASMA PHYSICS IN THEORY AND APPLICATION.

By WULF B. KUNKEL, University of California, Berkeley.

Bringing under one cover both theoretical and practical aspects, this thorough survey presents discussions on plasma physics by a panel of distinguished specialists. It first provides a compact introduction to the field, and then discusses basic theoretical notions, including pertinent dynamics of charged particles, statistical mechanics and resulting kinetic theory, and more. The book also covers special aspects such as stability, and waves and nonlinear flow properties. The last four chapters treat actual practical applications.

448 pp., \$15.50.

THE CONCEPTUAL DEVELOPMENT OF QUANTUM MECHANICS. By MAX JAMMER, Bar-Ilan University.

International Series in Pure and Applied Physics.

Using original source material, this excellent book offers the first thorough and critical treatment of the subject. It traces the conceptual development of quantum mechanics from its early inception as an ad hoc hypothesis to its final formulation as a full-fledged theory of atomic physics. Based on a broad physical, historical, and philosophical study, it discusses how each stage in the development of quantum mechanics was dependent on those preceding it.

416 pp., \$10.50.

OCEAN ACOUSTICS.

By IVAN TOLSTOY and CLARENCE S. CLAY, both of Columbia University, Hudson Laboratories.

Here in an authoritative monograph is the first systematic discussion of the theory of sound propagation in oceans. It uses the normal mode point of view throughout, applying this view to realistic problems of irregular boundaries and fluctuating conditions. The book also emphasizes future usefulness of the non-deterministic approach, including information on correlation properties of the acoustical field, signals in noise, etc. In addition, it gives special attention to the interaction between the field of underwater sound and related branches of physics and geophysics.

352 pp., \$15.50.

A SCATTERING THEORY OF WAVES AND PARTICLES.

By ROGER G. NEWTON, Indiana University.

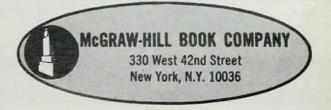
You will find this text an outstanding tool for teaching modern scattering theory to graduate and research physicists who do not intend to specialize in high energy nuclear physics. Written by a leader in the field, this is the first textbook to adequately discuss scattering and reaction experiments in terms of electromagnetic and quantum particle theory. It combines electromagnetic, classical particle, and quantum particle scattering to emphasize phenomena common to all three, and thus provide added physical insight.

Off Press.

ELECTRONIC CONDUCTION IN SOLIDS.

By ARTHUR C. SMITH, Massachusetts Institute of Technology; JAMES F. JANAK, IBM, Thomas J. Watson Research Center; and RICHARD B. ADLER. Massachusetts Institute of Technology.

McGraw-Hill Physical and Quantam Electronics Series. Written at the graduate level, this exceptional text treats electronic conduction in solids. It provides thorough coverage of the flow of electric charge and heat in the presence of magnetic field. The book treats a wealth of topics pertinent to the subject, treating them from both the macroscopic and microscopic viewpoints. Winter.


RADIO ASTRONOMY.

By JOHN D. KRAUS, Ohio State University.

The very wide range of topics covered in this introduction to radio astronomy make this book useful both as a teaching text and reference. Completely up-to-date, it includes such topics as quasi-stellar radio sources, flare stars, lunar occultation technique, polarization characteristics, HI, OH, and other lines, and wave propagation in a plasma. The book provides over 500 references to the literature, dozens of tables, and lists of over 1000 radio sources, and is profusely illustrated. The chapter on radio telescope receivers is written by Martti E. Tiuri of the Institute of Technology, Helsinki.

464 pp., \$13.75.

Examination copies available on request

Books for the Discriminating Researcher

A MULTI-VOLUME TREATISE . . .

High Energy Physics

edited by E. H. S. Burhop, University College, London

Discusses the contemporary field of both theoretical and experimental high energy physics. Included are the basic concepts of elementary particle physics; a detailed account of nucleon-nucleon interaction; pion-nucleon interaction; and the interpretation of nucleon-nucleon scattering measurements; a discussion of the powerful dispersion relations approach; a clear, concise summary of the form factors of nucleons; and information on the basis of unitary symmetry.

VOLUME 1, DECEMBER 1966, ABOUT 450 PP., APPROX. \$19.00

Magnetism and Magnetic Materials: 1966 Diaest

A SURVEY OF THE TECHNICAL LITERATURE OF THE PRECEDING YEAR edited by C. W. Haas and H. S. Jarrett,

E. I. du Pont Nemours and Co., Wilmington, Delaware

A bibliographic reference survey and summary of papers and books on magnetism and magnetic materials published during 1965. The material is organized to indicate the trends in magnetism and, where possible, to show the connection between various individual works. OCTOBER 1966, ABOUT 250 PP., \$11.00

VOLUME 9 OF APPLIED MATHEMATICS AND MECHANICS: AN INTERNATIONAL SERIES OF MONOGRAPHS

Theory of Optimum Aerodynamic Shapes

EXTREMAL PROBLEMS IN THE AERODYNAMICS OF SUPERSONIC, HYPERSONIC, AND FREE-MOLECULAR FLOWS

edited by Angelo Miele, Rice University, Houston, Texas

Indispensable as a reference work for anyone in the field. Utilizes an analytical approach to the fundamental problems inherent in the design of high-speed atmospheric and space vehicles. Also suitable for classroom adoption both in courses on the theory of optimum aerodynamic shapes and as a supplement to a textbook on the calculus of variations.

1965, 545 PP., \$16.50

Positron Annihilation

PROCEEDINGS OF THE CONFERENCE ON POSITRON ANNIHILATION edited by A. T. Stewart, University of North Carolina, Chapel Hill

and L. O. Roellig, Wayne State University, Detroit, Michigan

Contains a systematic and comprehensive review of positron annihilation in solids, liquids, and gases. Each paper is written by a specialist and active worker in the field. Especially organized to serve as an introductory presentation of the subject as well as a current summary for research workers.

SEPTEMBER 1966, ABOUT 450 PP., \$16.50

Spectroscopic Analysis of Gas Mixtures

by O. P. Bochkova and E. Ya. Shreyder, Leningrad State University

Translated from the Russian

This book is primarily concerned with emission analysis. Reflecting recent developments in Soviet research, it offers extensive descriptions of photoelectric procedures, quantitative methods of fast gas analysis, and procedures based on infrared and ultraviolet absorption spectra. Included are reproductions of spectrograms for most of the gases dealt with in practice, and tables to aid in selecting specific conditions for analyzing the most commonly used mixtures.

JANUARY 1966, 313 PP., \$14.50

VOLUME 1

Advances in Magnetic Resonance

edited by John S. Waugh

Dynamic Programming and Modern Control Theory by Richard Bellman and Robert Kalaba

Some Recent Advances in the Basic Sciences

VOLUME 1: ANNUAL CONFERENCES 1962, 1963, 1964

edited by A. Gelbart

VOLUME 1 OF MATHEMATICS IN SCIENCE AND ENGINEERING: A SERIES OF MONOGRAPHS AND TEXTBOOKS

Concepts from Tensor Analysis and Differential Geometry

SECOND EDITION by Tracy Y. Thomas

IN THREE VOLUMES . . .

Microwave Scanning
Antennas

edited by R. C. Hansen

VOLUME 3

Physics of Thin Films
Advances in Research Development

edited by Georg Hass and Rudolf E. Thun

Plane Vector Fields

by M. A. Krasnosel'skiy, A. I. Perov, A. I. Povolotskiy, and P. P. Zabreiko

Russian-English Dictionary and Reader in the Cybernetical Sciences

compiled by Samuel Kotz

A VOLUME OF MATHEMATICS IN SCIENCE AND ENGINEERING: A SERIES OF MONOGRAPHS AND TEXTBOOKS

Nonlinear Autonomous
Oscillations
ANALYTICAL THEORY
by Minoru Urabe

VOLUME 3

Advances in Nuclear Science and Technology edited by Paul Greebler and Ernest J. Henley

ACADEMIC PRESS P NEW YORK AND LONDON 111 FIFTH AVENUE, NEW YORK, N.Y. 10003

matrix equation nor are they determined by matrices which satisfy one.

In order to derive the quantum mechanical commutation relations and the Schrödinger equation, Landé argues from invariance considerations:

"It is characteristic of mechanics that, whenever it deals with a coordinate value q, this value is meant with respect to a certain zero point. Hence, when one has to do with two values q and q', only their difference is of physical significance, and the arbitrary zero point cancels out in q-q'. The same holds for the momentum p, as well as for energy E and time t. In short, mechanics is Galileo invariant. Transferring this invariance from classical to quantum mechanics, we now introduce the postulate:

"(c) Any observable T(q) has matrix elements (= transition values) $T_{pp'}$ which depend on the difference p-p' only. Similarly, any observable S(p) has matrix elements S_{qq} , depending on q-q' only. Analogous results hold for E and t'' (page 96).

From postulate c he is able to show that the transition probability amplitude from the state in which the particle has momentum p to that in which it has position q has the desired form const exp[ipq real const]. However, even though the first two sentences of c are quantum-mechanically correct, it is hard to see how Landé has obtained them from invariance principles together with the general laws of quantum mechanics which he has developed up to this point. Even if the principle of translation invariance can be understood to imply that some observables S should have the property that S_{qq} , are functions only of q-q', why should these observables be identified as functions of the momentum? What teason has been given that S_{aq} , should depend on q-q' (as it in fact does) when q is not a Cartesian coördinate, in which case it is not true that only the difference between two values of the coördinate has physical significance? And why should Galilean invariance permit one to select observables T(q), rather than some other observables, to have the property that T_{pp} depends only on p-p'? I

see no way of obtaining the commutation relations between the operators representing the position and momentum observables without making an explicit assumption about their kinematical relationship, the most straightforward being that a momentum operator p; is the infinitesimal generator of the group of shifts $U_j(a)\psi(q_1,...,q_{3n}) = \psi(q_1,...,q_{j-1},q_j-a,$ $q_{j+1},...,q_{3n}$) associated with the jth position observable. The momentum observable may simply be defined this way, but then an assumption is needed to relate it to the corresponding velocity observable. (Compare George W. Mackey, Mathematical Foundations of Quantum Mechanics, W. A. Benjamin, New York, 1963, pages 88 and 89.)

The last sentence of postulate c is especially obscure, since time is not an observable in ordinary formulations of quantum mechanics, and if Landé chooses to treat it as an observable he is obliged to explain what formalism he would use and to elucidate his conception of dynamics. It is indeed possible to obtain the Schrödinger equation from quite general assumptions (ibid., pages 81-4 and 89-90), but the analysis required is not implicit in Landé's remarks.

The leading ideas in Landé's interpretation of quantum mechanics are closely connected with his claim to derive its formalism from nonquantal postulates. "Elementary quantum mechanics of matter has to do with material bodies composed of particles with coordinates and momenta, q and p, . . . " (page 150) . According to his "realistic view," the coëxistence of exact values of position and momentum is compatible with quantum mechanics, and it is often possible to reconstruct to an arbitrary degree of accuracy the simultaneous position and momentum of a particle at an earlier time and even to reconstruct the trajectory of a particle between two position measurements (pages 118-28). It thus seems correct to say that Landé accepts the characterization of the state of a particle given by classical mechanics, though his attitude towards classical dynamics is unclear, since, on the one hand, he rejects causality, and, on the other hand, it is classical dynamics which permits the reconstruction of trajectories. He does clearly maintain, however, that there is a limitation upon the use of classical dynamics for the purpose of predicting, since "p and q cannot be exactly prepared and predicted simultaneously" (page 124). The formalism of quantum mechanics governs the predictions that can be made on the basis of data from macroscopic instruments concerning subsequent data from macroscopic instruments (page 133 and (7) on page 140).

If the ambiguity concerning the correctness of classical dynamics is disregarded, this interpretation is attractive, for it permits the physicist to retain the conceptually straightforward classical characterization of the state of a system and yet to use the machinery of quantum mechanics for making predictions. The difficulty, however, is that physical systems behave consistently as if the set of probability amplitudes, which this interpretation construes only as devices for relating the data of instruments, intrinsically characterize the systems, and as if the simultaneous values of p and q are irrelevant to their intrinsic states. Thus, extraordinarily good explanations of chemical properties, specific heats, magnetic resonances, conductivities, etc. can be given in terms of the probability amplitudes, even though the observation of these properties does not involve the determination of the positions and momenta of the constituent particles. In several passages Landé seems to recognize the intrinsic role of the probability amplitudes. For example, in commenting on the tunnel effect he says, "We cannot accept the statistical meaning of ψ outside the tunnel where it has been confirmed experimentally and forsake it inside the tunnel" (page 127). And he admits that in this case the assumption of the simultaneous existence of position and momentum leads to difficulties (page 128). In this passage (and also on pages 138-9) he inclines towards accepting the quantum mechanical characterization of the state of a physical system, but how this is to be reconciled with the essentially classical characterization espoused elsewhere in his work is utterly obscure.

Landé's tone in discussing various

riostrand | PHYSICS BOOKS

MAN AND HIS PHYSICAL WORLD, Fourth Edition

by Dwight E. Gray, formerly Chief, Science and Technology Division, Library of Congress; and John W. Coutts, Professor of Chemistry and Chairman, Department of Chemistry, Lake Forest College.

MAN AND HIS PHYSICAL WORLD, Fourth Edition, is intended to help the non-science student acquire insights into the methods of science, an appreciation of the scientific method as an approach to problem solving, and an understanding or how some of the great concepts of science have evolved.

The authors achieve continuity in their presentation by employing a unifying approach that stresses man's relationship to the various aspects of nature. They begin with a discussion of the solar system and astronomy, then devote attention to the relation between man and his own planet. The nature of energy and a consideration of man's understanding and harnessing of various forms of energy continue the book's theme through the physics section. Finally, the student is brought to a discussion of chemistry—man's investigation into the nature of matter. Thus the text begins with man's investigation of the infinitely large and brings the student down gradually to a consideration of the infinitely small.

For the Fourth Edition all chapters have been changed and most have been entirely rewritten. The changes have been made to improve clarity and to include the latest discoveries and theories. For example, the development of the Bohr atom has been retained for its historical interest and because of its usefulness in introducing atomic theory; once its shortcomings have been considered, however, it is no longer employed, and instead modern charge cloud atomic representations are employed to account for chemical bonding.

The Fourth Edition has been entirely reset in a new format, and all drawings are new, having been created specifically for this edition.

Review and discussion questions are provided at the end of each chapter, together with a list of reading references.

A Teacher's Manual to accompany the text is available. In addition to multiple-choice and true-false questions for each chapter, it contains answers to all numerical problems in the text and a number of additional examination questions.

COURSE USE

MAN AND HIS PHYSICAL WORLD, Fourth Edition, is designed for one-year or shorter courses in physical science at the freshman-sophomore level. There are no mathematical prerequisites.

672 pgs. 1966

\$8.50

The University Physics Series

Editor: Walter C. Michels, Bryn Mawr College

QUANTUM MECHANICS

by GEORGE L. TRIGGS, Assistant Editor, Physical Review Letters, Brookhaven National Laboratory, Upton. New York.

This distinguished presentation includes, wherever possible, the use of abstract operator methods in place of specific representation, emphasis on the weak points of the theoretical structure, and extensive discussion of frequently slighted topics such as multipole radiation, resonance scattering, and the Foly-Wouthuysen-Tani transformation. There are a liberal number of problems, frequent references to complementary texts and four appendices. Suitable for a full year course at the graduate level, this text is also an invaluable reference work for scientists and engineers, particularly those working in physics, mathematics, and chemistry.

395 pages

1964

\$9.75

ELEMENTS OF PHYSICS

by ROBERT F. KINGSBURY, Bates College

This is a rigorous and sophisticated text, written for science and engineering students, seeking to prepare them for advanced physics by developing basic ideas and methods to provide fundamental understanding. The book opens with a discussion of optics, enabling the student to gain facility with his concurrent study of the calculus, and moves on to kinematics, mechanics, and thermodynamics. Evident throughout is the author's belief that a physics text should promote a strong empirical attitude and an analytical questioning approach.

NEW MOMENTUMS

Published for the Commission on College Physics. Editor: Walter C. Michels, Bryn Mawr College

THE PHYSICS OF THE MUSICAL SOUND

by JESS J. JOSEPHS, Smith College

The theme of this book is that the scientific investigations now going forward in acoustics are of value to persons generally interested in physics and music as well as to specialists. Arts and science majors taking courses in general physics and acoustics will find the book most helpful. about 144 pages fall, 1966 prob. \$1.50

THE FREEZING OF SUPERCOOLED LIQUIDS

by CHARLES A. KNIGHT, National Center for Atmospheric Research

Suitable as a supplement in any study dealing with crystalline materials-physics, chemistry, geophysics or engineering-or in an elementary course in crystal growth. This work deals with crystallization from the melt with only brief attention given to crystallization from solution. While the freezing of water is the example of crystallization most used in the book, examples of metals, plastics and organic compounds are also presented.

#14 about 144 pages

fall, 1966

prob. \$1.50

RADIO EXPLORATION OF THE SUN

ALEX G. SMITH, University of Florida

Intended for those interested in physics or astronomy, this book emphasizes the physics of the sun, for in the sun are found atomic, nuclear, and electromagnetic phenomenon taking place on a scale that can never be duplicated in the laboratory.

Solar physics brings together most of the important ideas of modern physics—atomic spectra, electrodynamics, nuclear fusion, plasmas, mcgnetohydrodynamics. The generation and detection of radio waves are of primary concern in this book.

#15 about 160 pages fall, 1966

prob. \$1.75

versions of the Copenhagen interpretation of quantum mechanics is extremely polemical, though it must be admitted that among the passages which
he criticizes are some that are undoubtedly obscure. Actually, in spite of
violent dissent regarding wave-particle
dualism, Landé agrees with some
fundamental elements in Bohr's position, particularly his insistence that
quantum mechanics is concerned with
the results obtained by different experimental arrangements, and his comment "There is no quantum world."²

Perhaps both Landé, in his program of demystification, and his opponents, who maintain that the key to the mystery is complementarity, have underestimated the strangeness of microscopic reality which quantum mechanics has revealed.

I am grateful to Howard Stein for discussions of a number of the crucial points in this review.

References

 B. Podolsky, Philosophy of Science 24, 363 (1957); O. R. Frisch, Contemporary Physics 2, 213 (1960-1); H. Mehlberg in Current Issues in the Philosophy of Science (H. Feigl and G. Maxwell, eds.), Holt, Rinehart and Winston, New York, 1961, page 360; W. Yourgrau, British Journal for the Philosophy of Science 12, 158 (1961); V. F. Lenzen, Philosophy of Science 29, 213 (1962).

 Quoted on page 12 of "The Philosophy of Neils Bohr" by A. Petersen, Bulletin of the Atomic Scientists 19, 8 (1963).

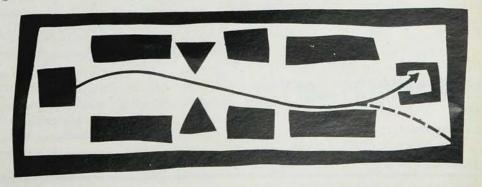
Abner Shimony is associate professor of the philosophy of science at Massachussetts Institute of Technology.

Molecular interactions

MOLECULAR BEAMS, Vol. X of Advances in Chemical Physics. John Ross, ed. 419 pp. Interscience, New York, 1966.

by Kurt E. Shuler

The present volume of Advances in Chemical Physics is devoted entirely to the subject of molecular beams. This idea of focusing a given volume of these series variously entitled: Advances in, Progress in, Studies in, Reviews of, etc., on a particular subject is an excellent one which deserves a much wider practice. What is particularly important in producing a successful focused review volume is the careful choice of an editor and his careful choice of authors with the concomitant selection of live topics in the forefront of research.


Molecular Beams is a success on all counts. The editor, Professor John Ross of Brown University, is one of the pioneer workers in the field of molecular beams and has made important contributions to the subject. The authors are all active and productive workers in the area of their contribution and must certainly be counted among the real experts in their specialty. The subject matters of the individual articles are well chosen for their importance and timeliness. Finally, the articles are well written; they are informative, detailed and authoritative.

The articles in this volume deal with current molecular-beam research in the general area of chemical physics. As mentioned in the preface, the common theme throughout the vol-

ume is molecular interactions. In principle, molecular-beam experiments involving such interactions provide one of the best, and certainly one of the most direct means for measuring molecular properties including cross sections for chemical reactions. In practice, as can be seen from a study of the articles in this volume, we are now firmly on the road of carrying out such measurements and converting what were once only Gedanken-experiments into data and graphs.

The menu of this delectable and nourishing meal is as follows: As an appetizer, B. Bederson and E. J. Robinson of New York University discuss the use of molecular beams in the measurement of atomic polarizabilities. I. Amdur and J. E. Jordan of MIT present a critically evaluated review of the work on elastic scattering of high-energy neutral beams for the determination of interaction potentials at small internuclear separation. This is followed by a chapter on quantum effects in elastic molecular scattering by R. Bernstein of the University of Wisconsin, which gives a detailed comparison between

the classical and quantum results for various cases of inelastic scattering. Scattering in chemically reactive systems is discussed by Greene, Moursand and Ross of Brown University who show how their and other workers' results on the elastic scattering of chemically reactive species can be used to obtain information on inelastic reactive cross sections. E. E. Muschlitz of the University of Florida discusses the production and detection of molecular beams of electronically excited species and the measurement of elastic and inelastic cross sections of electronically excited metastable species in interactions with various neutral molecules. R. F. Stebbings of General Atomic, San Diego, presents a selective review of recent work on charge transfer, that is, elementary interactions involving the transfer of an electron between an ion and a neutral particle. This theme is continued and carried forward by C. F. Giese of the University of Chicago who discusses low-energy charge-transfer reactions and ion-molecular reactions in beams with particular reference to mass-spectroscopic measurements. As

