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ENTROPY
in Nonequilibrium

Statistical Mechanics

Statistical mechanics aims at deriving from first principles an entropy theorem
that guarantees approach to thermodynamic equilibrium. The theory for dilute
gases initiated by Boltzmann and formalized by Bogolyubov has been recently
completed. But efforts to include the three-particle interactions in gases that
are dense encounter intense difficulties.

by Arnold H. Kritz and Guido Sandri

SINCE ANCIENT TIMES describing the be-
havior of macroscopic matter in terms
of dynamic principles that govern its
microscopic constituents has fascinated
physicists. Foundations of the modern
understanding were laid by Ludwig
Boltzmann in the latter part of the
19th century.1 From physical argu-
ments concerning the probable num-
ber of binary collisions (the Stoss-
zahlansatz based on the principle of
molecular chaos) , Boltzmann deduced
a "kinetic" equation satisfied by the
probability distribution function.

The underlying theme of nonequi-
librium statistical mechanics is to
understand how macroscopic systems
approach thermodynamic equilibrium.
Boltzmann brilliantly opened the in-
vestigation by demonstrating by way
of his H theorem that the molecular
velocity-distribution function for a di-
lute gas ultimately approaches the
Maxwellian distribution; thus he es-
tablished an entropy principle. He
based his demonstration on deep phys-
ical arguments but not on the exact
dynamics of constituent particles.

In attempting to establish Boltz-

mann's equation as a consequence of
particle dynamics, Nikolai N. Bogolyu-
bov has developed a systematic expan-
sion in which Boltzmann's equation
is the lowest-order result. Bogolyubovfs
expansion, in conjunction with estab-
lishment of the class of correlations
that allows for a kinetic description of
the gas, yields the link that was miss-
ing in Boltzmann's theory between
dynamics and the entropy principle.
But paradoxically higher-order terms
in Bogolyubov's expansion fail to yield
an entropy principle, thereby reopen-
ing the problem of understanding
approach to thermodynamic equilib-
rium.

The efforts that have been made
toward resolution of this paradox
have, in turn, produced a number
of fascinating problems. The solution
of the three-body problem for the
simple case of hard spheres prompts
current attempts to solve the A7-body
hard-sphere problem. Success in the
study of simple interaction laws (step-
function potentials) suggests the study
of a kinetic description of realistic
gases (that is, gases with an attractive

part in their potential) . The relation-
ship established between the Liouville
equation and Krook's relaxation equa-
tion stimulates interest in understand-
ing the spectrum of linearized collision
operators. In recent studies of higher-
order kinetic theory, it has become ap-
parent that density dependence of
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transport coefficients is not analytic.
The precise form of this density de-
pendence is not established for real-
istic gases.

Boltzmann and Bogolyubov theory

Boltzmann's kinetic equation predicts
the behavior of the probability dis-
tribution function / (x, v, /) for a
particle with position x and velocity
v. It expresses the rate of change of
the number of particles in an in-
finitesimal region of phase space as
the flow of particles into this region
due to their motion in a force field
plus the net rate at which particles
are scattered into this region by col-
lisions. The kinetic equation can be
written as

-~L + v • V/ + F • V,./ = A [/] (1)
dt

The vector F represents the external
force per unit mass, and A[f] denotes
the time rate of change of the dis-
tribution function due to collisions.
Boltzmann's argument yields for the
collisional rate of change of the dis-
tribution function produced by two-
body interactions among point parti-
cles the famous result

the initial letter of entropy, and not
as capital h, the connection of the H
theorem with entropy increase is more
readily noted.)

= 0 (3)

(2)

With Boltzmann's kinetic equation
(the combination of equations 1 and

2), it has been possible to explain
most of the known features of the
steady-state behavior of dilute gases,
for example, the transport properties.
Moreover, by means of Boltzmann's
equation, entirely new phenomena
have been predicted. For example,
thermal diffusion, used during World
War II in the separation of the fis-
sionable -35U from its abundant iso-
tope 23SU, was predicted in 1911 by
David Enskog.

A most important consequence of
Boltzmann's kinetic theory is that it
introduced a basic conceptual clarifi-
cation of irreversibility.- Physically re-
alizable macroscopic systems relax to
thermodynamic equilibrium although
individual particles satisfy time-rever-
sible equations of motion. Boltzmann
obtained from his kinetic theory a
specific form of the entropy principle
known as the " H theorem." (If the
symbol "H" is read as (capital) eta,

where

= fflogfdv (4)

Equation 3 implies for a spatially
homogeneous gas that the single-par-
ticle velocity-distribution function re-
laxes to the unique stationary solu-
tion of the kinetic equation, namely,
the Maxwellian velocity distribution.
Because the beautiful theory of Boltz-
mann was based on physical argu-
ments regarding only two-body colli-
sions and not obtained from the dy-
namical laws of motion for all the gas
particles, a famous and important
controversy resulted concerning the
validity of the kinetic equation. This
controversy helped place Boltzmann's
theory in proper perspective: The
theory represents the behavior of di-
lute gases.8

In 1940 Bogolyubov4 broke new
ground by establishing Boltzmann's
equation for a nearly spatially homo-
geneous and isolated gas as the low-
est-order term in a systematic expan-
sion of the Liouville equation

fHv, Fvl™ = 0 (5)

The second term represents the Pois-
son bracket of the Ar-body Hamilton-
ian with the AT-body phase-space dis-
tribution function, FN. Equation 5
compactly summarizes the time-rever-
sible equations of motion for all the
constituent particles. The gist of Bog-
olyubov's derivation of the Boltzmann
equation is the observation that the
joint probability distribution function
for two bodies changes very rapidly
during a collision (because of the dras-
tic change in the two momenta) al-
though the single-particle velocity-dis-
tribution function changes appreci-
ably only on a much longer time
scale, of the order of the mean free
time between collisions. Exploiting
this observation, Bogolyubov assumed
that the two-body distribution be-
comes rapidly "synchronized" to the
single-particle distribution in the sense
that the time dependence of the two-
body distribution function can be ex-

pressed in terms of the single-particle
distribution function. Bogolyubov fur-
ther assumed that the distribution
function for any number of particles ,
varies with time only through the sin-
gle-particle distribution function ''''",
("functional assumption") . As the in-
itial condition on the distributions,
Bogolyubov imposed molecular chaos.
The latter restriction has since been
removed as you will see later in the
section on multiple time scales.

Since Boltzmann's theory accounts
for only two-body interactions, it is
clear that an understanding of mac-
roscopic properties that depend on
three-body interactions cannot be ob- '
tained without going beyond Boltz-
mann's theory. Bogolyubov's analysis
opened a major and most promising
program since, by calculating to suffi-
ciently high order, one should be able,
in principle, to determine any mac-
roscopic property of neutral gases or
plasmas. George Uhlenbeck played a
major role in giving momentum to
the advancement of this program.5

The transport coefficients are macro- *
scopic properties of considerable phys-
ical importance since they fulfill a
basic role in determining the space
and time dependence of density, tem-
perature and flow velocity. For a gas
in which only two-body interactions
are operative, Boltzmann's theory im-
plies that the transport coefficients '
satisfy "Maxwell's law": The trans-
port coefficients are density independ- ]

ent.G For dilute gases this result is ex-
perimentally verified. To describe
transport properties in "dense" gases
(p ^ 5 atm, T « 300 °K) and gases
in which chemical transmutations oc-
cur, three-body interactions are essen-
tial. For example, the understanding
of dense monatomic gases requires
knowledge of the bulk viscosity co-
efficient.7 This transport coefficient for
monatomic gases as deduced from the
Boltzmann equation (which includes
only binary collisions) vanishes iden-
tically. With regard to macroscopic
properties of reacting gases, one can
verify that even the simplest dissocia-
tion of a diatomic molecule requires
a three-body collision to satisfy the
conservation laws of energy and mo-
mentum. A similar argument applies
to the association of two atoms into
a diatomic molecule.
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It was found in 1961 that the high-
er-order terms in Bogolyubov's expan-
sion generally contain divergent in-
tegrals. Moreover these terms do not
fulfill Boltzmann's entropy principle,
the H theorem.8 Consequently, Bogo-
lvubov's method, in spite of provid-
ing conceptual progress over Boltz-
mann's approach, does not yield a
fully satisfactory theory of irreversi-
bility. Forms of the entropy principle
that generalize Boltzmann's H theo-
rem have been studied.9 It is an open
question whether these generalizations
can resolve some of the difficulties
associated with Bogolyubov's method.

In what follows we first present
an example that demonstrates the fail-
ure of Bogolyubov's scheme. Paths
that have been suggested to avoid
these difficulties are then indicated.
Special emphasis is given to the re-
cently developed multiple-time-scale
approach. Finally, there is a discus-
sion of research in progress of which
the aim is to carry to completion the
basic program of nonequilibrium sta-
tistical mechanics, namely, that of ob-
taining a general description of the
evolution of macroscopic systems that
satisfies an appropriate entropy prin-
ciple, thereby restoring the insight in-
troduced into irreversibility by Boltz-
mann's H theorem.

Failure of Bogolyuboi* theory

Gradients in density, flow velocity and
temperature result in transport of par-
ticles, momentum and energy. A trans-
port coefficient can be expressed as
a time average of statistical correla-
tions among fluxes corresponding to
the transport property considered.
For example, the diffusion coefficient
for a particle with velocity v is given
by

D = I dt < v (0) • v (t) > (6)
o

Relationships between the transport
coefficients and the appropriate corre-
lation functions, such as given in equa-
tion 6, are known as "fluctuation-dis-
sipation" theorems.10 Determination of
the correlation functions is accom-
plished with kinetic theory. Thus an-
alytic calculation of transport proper-
ties is ultimately dependent on es-
tablishment of a "physically correct"

kinetic (or master) equation with an
appropriate entropy principle.11

As a result of the convergence dif-
ficulties, the transport coefficients can-
not be properly evaluated within Bog-
olyubov's theory.1- For example, when
Bogolyubov's technique is used to con-
struct the kinetic equation, equation
6 yields, for fixed scattering centers,
die following result for the diffusion
coefficient correct to first order

(

(d is the particle diameter; n the
particle density; s the dimension of
the space, and As a numerical con-
stant) . Clearly, equation 7 implies that
the ratio of the lowest-order coeffi-
cient to the result correct -to first

order approaches infinity rather than
remaining close to unity; that is

D(°»
(8)

Equation 8 indicates that expansion
of the diffusion coefficient in powers
of the dilution parameter nd* cannot
be adequate since addition of higher-
order terms does not produce correct
density dependence.

Thus, Bogolyubov's method for sys-
tematizing kinetic theory yields di-
vergent results for nonequilibrium den-
sity-dependent effects in neutral gases.
It is natural to ask whether this re-
sult is peculiar to neutral gases. Bogo-
lyubov's theory is of sufficient scope
to describe ionized gases (plasmas).
In fact, one of its major triumphs is
that it yields a kinetic equation that

properly accounts for Debye shield-
ing.4. *<* It has been proven that this
theory yields divergent results for
plasma properties when calculations
are extended beyond the lowest or-
der in the plasma parameter
(l/"Ai>3).8'14 Difficulties implied by
equation 8 are therefore not confined
to neutral gases. Dramatic forms of
these infinities also occur when Bogo-
lyubov's method is applied to derive
the master equation, that is, the ir-
reversible equation for the distribution
of all particle momenta.15 It must be
concluded that the divergences which
arise in Bogolyubov's scheme prevent
rigorous establishment of an entropy
principle (and, consequently, of a
physically correct kinetic equation)
thereby depriving Bogolyubov's irre-
versibility theory of its logical foun-
dations.

Physical basis for failure

A major reason for divergences in
Bogolyubov's method of calculation
can be understood as follows.8 The
lowest-order kinetic equation (the
Boltzmann equation) takes into ac-
count the probable effect of collisions
between two particles. The corrections
to the Boltzmann equation require
the calculation of interactions among
three or more bodies. Three-body in-
teractions include both "long-range"
and "short-range" successive binary
collisions. Short-range three-body inter-
actions are those in which a particle
that has already undergone a binary
collision collides with a third particle
at a distance short compared to the
mean free path whereas long-range in-
teractions are those in which the colli-
sion with the third particle occurs at a
distance comparable with the mean
free path.

U we call ru the range of the inter-
molecular potential, the mean duration
of a binary collision is approximately
ro/(hT/m)K ( - l O 1 - sec for an inert
gas at standard conditions). In general
the mean free time is the much longer
time \j(kTIw)VJ where \ « 1 /nr(

2 is
the mean free path. The mean free
time is about K)-° sec, that is, 1000
times the duration of one collision. In
figure 1 we show an interaction involv-
ing three particles that undergo two
successive binary collisions. Due to en-
eroy and momentum balance, the suc-
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cessive collisions generate three-body
correlations over die time interval tt —
t{. The distinction between short- and
long-range correlations corresponds to
the time interval A*. Three-particle
correlations are "genuine" short-range
correlations if &t is of order of magni-
tude ro/(kT/m)y* whereas we. have
long range correlations if A^ is of the
order of magnitude of \/(kT/?n)V*. In
Bogolyubov's method, three-body in-
teractions erroneously include long-
range successive binary collisions.
These collisions give rise to three-
particle correlations with macroscopic
correlation lengths, of the order of the
mean free path. This type of collision
has already been taken into account in
the lower-order binary-collision term
(Boltzmann) and should not be counted
again. In Bogolyubov's method, how-
ever, these completed successive two-
body collisions with long-range correla-
tions are recounted in each of the
higher orders giving rise to divergent
integrals. By exploiting the physical
argument given above, two approaches
that ultimately may be related have
been suggested to remedy the de-
fects in Bogolyubov's expansion: (1)
to sum the troublesome successive bin-
ary collisions to all orders and (2)
to treat the two-particle distribution
dynamically on the same footing as
the one-particle distribution (closely
related to the concept of closure) .

The first approach emphasizes the
singular nature of Bogolyubov's ex-
pansion. It is based on the observa-
tion that summing the most singular
terms of a series often yields physical-
ly meaningful results. This idea has
been used extensively in reproducing
the main results of Bogolyubov's meth-
od by a perturbation technique.10, 17

The method of "summing the most
singular contributions" is applied in
a natural way to the three-body prob-
lem by summing successive binary col-
lisions to all orders. This process
yields, for two-dimensional models,
transport coefficients that have a log-
arithmic density dependence.12 Full re-
sults for three-dimensional analysis
are not yet available. Furthermore, it
has been possible formally to sum the
entire series by obtaining an explicit
expression for the nth order term in
Bogolyubov's expansion.15' 18 However,
it has not yet been established how to

incorporate this summation process in-
to a theory of irreversibility (with
an appropriate entropy principle)
that includes all three-body collisions.

The second approach emphasizes
that the difficulty in Bogolyubov's ex-
pansion arises from correlations with
an excessively long range. This ap-
proach requires that the two-body cor-
relation function be treated as a fun-
damental variable, on the same foo.t-
ing as the one-particle distribution
function. This approach has been used
to calculate plasma conductivity for
plasmas subjected to rapidly oscillat-
ing fields.19 With rapidly oscillating
fields, Bogolyubov's functional as-
sumption becomes invalid since the
impressed field can cause changes in
the particle momenta on a time scale
comparable to the collision time, thus
causing the one-particle distribution

function to change on the same time
scale as the two-particle correlations.
Consequently the time dependence of
the two-body correlation must be de-
termined directly through dynamical
equations rather than through the one-
particle velocity distribution. The mo-
tivation for treating two-body correla-
tions as basic dynamical entities in
the absence of external fields is also
based on a physical analysis of the
pertinent time and space scales. To
understand the physics of the distinct
time scales that occur in a gas, the
"multiple time-space scale expansion"
technique has been developed.8 .20

This technique has yielded important
results in its own right, and we shall
discuss it in more detail in the next
section. The main conclusion concern-

ing the two-particle correlation func-
tions is that these subsist only for
times comparable to the mean free
time and become disrupted by colli-
sions with a third body only for longer
times. Even though complete results
are not yet available, this approach
is very promising in that primarily
the "genuine"-short-range part of the
correlations contributes to the correc-
tion to the Boltzmann equation.

Multiple time scales

In view of the wide difference between
the duration of one collision and the
mean free time between collisions (r0/
(kT/m)K < \/(kT/my/*) it is desira-
ble to separate in the mathematical
analysis phenomena that occur on the
two time scales. The basic idea of the
multiple-time-scale method is to use
the chain rule of differentiation to ex-
press die time derivative of a function
in terms of successively slower time
scales

0x(Tn = €»t) d\(rn) d\(rn)

dt

• + (9)

The fast time scale To is measured for
neutral gases in units of the duration
of one collision and, for fully ionized
gases, in units of the inverse plasma
frequency. The slower rtime scale Tl

is measured in units of the mean free
time. We shall discuss the meaning
of the T2 scale at the end of this sec-
tion.

It can be shown that the formulas
of Bogolyubov correspond to the mul-
tiple-time-scale formulas in the limit
as To approaches infinity. This result
establishes a satisfactory link between
Bogolyubov's systematic expansion and
the descriptions of irreversibility due
to John Kirkwood21 and to Marshall
Rosenbluth and Norman Rostoker.13

By not taking To to infinity at the out-
set of the calculation, the multiple-
time-scale technique yields the be-
havior of transients that occur in a
gas prior to establishment of the fully
developed kinetic regime, diat is, the
gaseous regime described by the sin-
gle-particle distribution function. (In
the same spirit, calculation of transi-
ents that occur prior to establishment
of the hydrodynamic regime has been
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THREE-BODY COLLISION consists of two successive binary
collisions. Short-range correlations involve total collision times
that are comparable with duration of binary collisions. Long-
range ones involve collision times that are of the order of
mean free time particles spend between collisions. —FIG. 1

carried out with this method by James
McCune and his colleagues.-0) The
condition the correlation functions
must satisfy, if a kinetic equation is
to hold at all, has been established
u'ith multiple time scales when the
oliisions produce small momentum
ransfer.-- The condition is that there
hould not be too many pairs of par-
dcs with vanishing relative velocity.

ich pairs give a "beam" structure
o the gas and slow down the ap-
proach to equilibrium. The determi-
nation of the class of correlations that
«'ire "kinetic" (that is, that guarantee
that a kinetic equation holds) estab-
1 shes from first principles the mean-
*ng and limitations of the idea of
molecular chaos. Thus calculation of
kinetic conditions completes the pro-
gram initiated by Bogolyubov for de-
riving lowest-order kinetic theory on
purely dynamical grounds.

We now pursue the implications of

the multiple-time-scale expansion for
higher-order kinetic theory by exam-
ining evolution of the single-particle
distribution on the slowrer time scales
(Tn == e

nt) . On the T l time scale, that is,
within a few mean free times, the one-
particle velocity distribution in a homo-
geneous gas becomes Maxwellian. On
slower time scales one does not ex-
pect further time dependence of the
one-particle distribution function. (It
should be emphasized that fluctuations
about equilibrium that occur over
times comparable to Poincare's recur-
sion time are not pertinent to the
present problem since the Poincare'
recursion time is made infinite by let-
ting the particle number and volume
tend to infinity with the mean den-
sity held constant.)

The physical analysis of the perti-
nent time scales leads naturally to the
condition of closure, that is, to the re-
quirement that the single-particle dis-

tribution function be constant over
time scales long compared with the
mean free time. By setting the rate
of change of the one-particle velocity
distribution function, evaluated for
large Tl, equal to zero on all slower time
scales, conditions are imposed on the
higher-order contributions to the tŵ o-
and three-body distribution functions.
This leads to a dynamical treatment
in which the two-particle correlations
subsist on distances of the order of
one mean free path only. A "weak
H theorem" can then be shown to
hold. This form of the H theorem
is called "weak" because it requires
restrictions on the rate of change of
the single-particle distribution and on
its moments. The consistency of the
closure process to all orders has been
proven only for the special case in
which the interaction energy between
particles is small compared to the
thermal energy.23 Also analysis of the
strong short-range interaction is well
under way.-4 An interesting series of
investigations that may be considered
as the ionized-gas version of the clo-
sure procedure concerns establishment
of a completely convergent kinetic
equation for a fully ionized Lorentz
gas.25 This theory accounts automati-
cally for short-range interactions, for
interactions with small momentum
transfer and for the Debye shielding of
distant encounters. The failure in Bog-
olyubov's theory to provide an en-
tropy principle can be clarified by
the multiple-time-scale analysis. On
the fast time scale (T() = t (kT/m)K/r0)
the system is reversible. The approach
to thermal equilibrium should be de-
scribed in lowest order on the next
time scale by a decay of the form

exp ( - T l ) = exp (-e/) (10)

where the decay time is of the order
of a mean free time (Tl — t(kT/m)^/\).
This behavior is borne out by the
Boltzmann equation. The correction
to lowest-order decay appears on the
Tn — e't scale and should be of the
"normal" type

exp (—Ti) X exp (—TO) (11)

The normal behavior corresponds to
saying that the relaxation time l / c

is corrected to l / (e + e-). The pres-
ence of completed successive binary
collisions in Bogolyubov's expansion,
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Report from

BELL
LABORATORIES

High-performance
amplifiers

for coaxial transmission

Field-trial installation of the new tran-
sistor amplifiers in manhole near Dayton,
Ohio. Amplifiers and associated circuits
comprise repeaters; they are mounted
in drawer-type boxes, then placed in
gas-tight cylindrical housings. With the
new system, a pair of coaxials will carry
up to 3600 telephone conversations on
an 0.5-MHz to 20-MHz band. A fully
utilized coaxial cable could handle up
to 32,400 conversations. On a coast-to-
coast connection over the new system,
about 2000 repeaters would be needed
for each direction of transmission, with
a total one-way amplification of as much
as 75,000 dB.

Low-distortion, wideband transistorized
amplifier developed at Bell Laboratories
for a new coaxial cable system.

Every "hi-f i" enthusiast knows that
faithful reproduction of music re-
quires an amplifier with constant gain
and low distortion over a wide band
of frequencies. Amplifiers for such
purposes are available today with 100
watts of power, gain deviation of less
than 1.0 dB from 20 to over 20,000
hertz, and less than 0.4% distortion.
This high level of performance has
been obtained by utilizing to the
fullest the best of today's electronics
technology.

At Bell Telephone Laboratories, the
development of modern coaxial cable
systems for transmitting thousands
of telephone conversations also re-
quires amplifiers which push elec-
tronics technology to its limits. The
low-frequency limit for these ampli-
fiers need not be as low as that for
hi-f i amplif iers, but the high-fre-
quency limit must be much higher—
20 megahertz. The power output can
be less-on the order of 1/10 watt-
but the gain deviation must be less
than 0.25 dB, and the distortion must
be limited to 0.0004%. These require-
ments arise from the large number of
simultaneous Voice signals which
these amplifiers must transmit and
the large number of amplifiers that
must be connected in tandem for a
coast-to-coast system.

In the past, such amplifier perfor-
mance was impossible. Today it is
possible because of circuit-design
techniques which include close con-
trol of feedback and the use of digital
computer techniques to optimize cir-
cuit parameters. And of consider-
able importance to the design, new
transistors were developed at Bell
Laboratories with properties that are
constant over wide dynamic and fre-
quency ranges.

Bell Telephone Laboratories
Research and Development Unit of the Bell System
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however, leads to an "abnormal" be-
havior of the type

exp(-Ti) + exp ( - T 2 ) (12)

The abnormal behavior corresponds to
a time variation that continues well
beyond the (lowest-order) relaxation
time 1/c- Bogolyubov's functional as-
sumption, which leads to the "abnor-
mal" evolution, prevents a satisfactory
construction of the entropy principle.
Use of multiple time scales in con-
junction with the method of exten-
sion8 provides a promising departure
from this impasse.

It is interesting to note that there
is a deep analogy between deriving
irreversible equations from Liouville's
theorem and deducing behavior of de-
caying nuclear or atomic states from
the Schrodinger equation. The multi-
ple-time-scale approach has clarified
this important problem.20

Prospects for a complete theory

The convergence difficulties of Bogo-
lyubov's method, which we described
above, are only partially resolved by
proposals previously considered. A
complete theory of irreversibility that
includes all types of three-body inter-
actions is not provided by these
techniques.

Therefore major steps must be
taken to obtain such a complete
theory and to predict with certainty
transport properties when three-body
interactions are important. In particu-
lar, the calculational methods that
have been dominated by Bogolyubov's
theory must be substantially improved.
With such improvements it should be
possible to determine accurately den-
sity dependence of transport coeffi-
cients and kinetic collision integrals.
We believe that multiple-time-scale
theory provides a promising approach
in this direction.

Bogolyubov's technique yields for-
mally the effects of three-body colli-
sions on the transport coefficients.
But, in giving a general (formal)
solution, Bogolyubov imposes an as-
ymptotic behavior on the distribution
functions ("functional assumption")
that, in view of the convergence dif-
ficulties, contradicts the three-body dy-
namics. In sharp contrast the multiple-
time-scale technique (or more general-
ly* the technique of extension) avoids
this pitfall of Bogolyubov's method.-7

This technique does not impose a
priori an asymptotic behavior on the
distribution function. Instead, to de-
termine the behavior of the distribu-
tion functions, the specific form of
the particle trajectories is required.
Since knowledge of the trajectories
yields information concerning- the
transport of momentum and energy,
requiring this knowledge is physically
reasonable. Note that the successful
calculation of transport coefficients for
low-density gases is based on the
Boltzmann equation, which contains
detailed information on two-body tra-
jectories. In higher-order theory it is
essential to determine the three-body
trajectories.

Types of collisions among three
hard spheres (of equal masses and
radii) have been categorized.28 The
analysis gives full details of phase-
space behavior required by statistical
mechanics. In particular, the bounda-
ries of the phase-space regions in
which 1, 2, 3, and 4 (!) successive
binary collisions occur have been de-
termined (see figure 2) . Furthermore,
it has been demonstrated that five suc-
cessive binary collisions among three
bodies are impossible. It has been
proven, in fact, that the only colli-
sion chains that are possible among
three hard spheres (of equal masses
and radii) labeled 1, 2, and 3 are
those listed in the following table.
The symbol (i,j) represents a colli-
sion between particle / and particle /.

Single collision
(1.2)

Two successive collisions
(1.2)-(2,3)

Three successive collisions
(1,2)-(2,3)-(1,2)
(1,2) - (2 ,3) - (U)

Four successive collisions
(1,2)-(2,3)-(1,2)-(1,3)

It must be noted that time-reversed
collision chains are also allowed. For
example, the chain (1,3) - (1,2) - (2,3) -
(1,2) is equivalent to the four-colli-
sion sequence given in the table.
The reader is urged to experiment
with three pennies on a smooth sur-
face. With some practice he can gener-
ate the allowed collision chains. In
Bogolyubov's expansion, not only were
the precise domains for the particle-
collision chains not employed, but
some types of collisions, (for example,
four successive collisions) were alto-

gether omitted. The successful solu-
tion of the three-body problem has in-
spired an interesting program, estab-
lishment of trajectories for N hard
spheres. Solution of this problem
would constitute the first nontrivial
model for nonequilibrium statistical
mechanics. For hard spheres, the tra-
jectories are sectionally straight lines.
This enormous simplification over the
gravitational problem is responsible for
the solubility of the three-body prob-
lem and might permit solution of the
A7-body problem. The anslysis carried
toward this end, however, indicates
that the problem is a difficult one.29

To obtain a kinetic equation that
yields density-dependent transport co-
efficients, it is very desirable to avoid
the singularities associated with the
hard-sphere interaction. These singu-
larities correspond to an infinite po-
tential jump at the boundary of the
sphere. This jump yields for the force
a delta function multiplied by an in-
finite coefficient. For finite-depth po-
tentials, although the force remains a
delta function, the coefficient is finite;
consequently, the integrals required
for calculating transport properties are
more readily treated. It is desirable,
therefore, to solve the dynamical prob-
lem corresponding to such an inter-
particle potential. Inclusion of finite-
depth potentials is also of interest
since it provides the basis for obtaining
the kinetic equation for realistic gases
whose particles interact through po-
tentials that contain an attractive part.
The kinetic equation for such realistic
gases has not been rigorously estab-
lished. An attractive part in the po-
tential law is essential if considera-
tion is to be given to association and
dissociation in a neutral gas and
ionization and recombination in a
plasma.

We have seen that description of the
evolution of a gas in terms of col-
lisions among only a few particles
meets with severe difficulties. Instead
of considering only two-particle colli-
sions in lowest order and three-body
interactions in first order, it is natural
to consider small departures from
equilibrium in lowest order and to
allow larger departures in higher or-
der. With this point of view, an alter-
native approach to the problem of
irreversibility has been established30
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IV (1.3)

through the derivation (subject to ap-
propriate conditions) of the Jeans-

- Krook kinetic equation31 from the
Liouville equation. Thus, it has been
shown that the Jeans-Krook equation
is not subject to the limitation that
only binary collisions are considered.
In fact, the following relaxation equa-
tion has been shown to hold for a
wide class of systems as a consequence
of the master equations8-

The function A is the departure of
the single-particle velocity-distribution
function from its equilibrium value
M. The operator 1/T is a linear opera-
tor defined and discussed in detail in
reference 30. Equation 13 implies that
the state of the gas near equilibrium
is a superposition of exponential de-
cays. The entropy principle in this
formulation of kinetic theory requires
that 1/T have only positive eigen-
values. Consequently, it is of major
interest to study the spectrum of 1/T.
It has been demonstrated that // a gap
in the spectrum of 1/T exists, that is,
if T possesses a dominant eigenvalue,
an expansion in the small parameter
T(next to dominant)/T(dominant) is
possible. Clearly this procedure can
be extended to the case in which

o Connects Colliding Spheres

FOUR-COLLISION SEQUENCE: (1,2) - (2,3) - (1,2) - (1,3). Spheres are shown at
instant of first collision. Velocities indicated are initial ones and those after third
collision. Trajectory data were obtained from a computer experiment by Roger
Sullivan. First three collisions (I, II and HI) are shown and fourth (IV) occurs at
approximately nine body diameters from location shown. Sphere 1 is stationary
between collisions that are numbered I and III. —FIG. 2

there is a clustering of eigenvalues
about a dominant one. The spectrum
of T need not be completely discrete.33

Analysis of the pertinent time scales
shows that in the first stage of the
relaxation a transient behavior is ex-
hibited by A which corresponds to the
"small" relaxation times. When these
transients subside, lowest-order theory
yields the Jeans-Krook kinetic equa-
tion (which satisfies the Boltzmann
H theorem)

df/Ot = (M - f) IT (dominant) (14)

where M is the equilibrium or steady-
state distribution function. The fa-
miliar mean free time has been iden-
tified with the dominant eigenvalue
of the operator 1/T- Although equa-
tion 14 can be obtained by linearizing
the Boltzmann equation (equations 1
and 2), the derivation of equation 14
directly from the Liouville equation
has established the validity of the
Jeans-Krook kinetic equation for a
class of systems for which the Boltz-
mann equation is inadequate. Knowl-
edge of the transport properties of
real gases results from study of the
eigenvalues of the relaxation operator
l/T-;"*4 When a few relaxation times
are dominant, analysis of transport
coefficients is substantially simplified.

By describing the transport coefficients
in terms of a limited number of re-
laxation times, a phenomenological
analysis of the transport properties of
real gases is feasible.35 Moreover, this
analysis should yield information con-
cerning the spectrum of T- The Jeans-
Krook equation described above yields
the time evolution of the single-
particle momentum distribution. The
special choice of the degrees of free-
dom (particle position and momen-
tum) employed in the above deriva-
tion is not essential. A simple relaxa-
tion equation can be based on any
choice of degrees of freedom, some
of which may be collective. In recent
studies of Fermi liquids, the relaxa-
tion equation for the distribution of
collective coordinates has been em-
ployed.-™

All the problems in nonequilibrium
statistical mechanics are ultimately re-
lated to the quest for the correct
form of the entropy principle. Much
effort is being devoted to the solution
of these problems. We hope that,
thanks to these efforts, a satisfactory
description of the approach towards
equilibrium, including an appropriate
entropy principle, will be achieved in
the near future. 0
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