semi-elements YOUR PRIME SOURCE FOR

GAMMA RAY SPECTROMETRY PLATES and BENDING BLOCKS

Finished, ready for use

- Germanium
- Silicon
- · Gold
- Bismuth
- Many Others

NEUTRON SPECTROMETRY PLATES and ACCESSORIES

Guaranteed mosaic spreads

- Aluminum
- Copper
- Lead
- · Bismuth
- Magnesium
- Zinc
- Cadmium
- Arsenic
- · Cobalt-Iron
- Nickel
- · Many Others

LASER SYSTEMS

- Gas
- Solid State
- Diode

For literature . . . write Dept. PT7

LETTERS

Obscurity cult

I have often marveled at the problem that is the basic query of your [April] editorial ("Is physics too tough?"). It has seemed to me for some years that among physicists there is almost a cult, although certainly not an organized one, which I please to call a cult of obscurity. The creed of the cult is that a member disgraces the profession if he ever writes, lectures or teaches intelligibly to anyone but his immediate colleagues in the profession.

Some high-school physics teachers are true soul-members of the cult, but most are not. The nonmembers, however, often feel driven to make physics difficult in order to live up to standards that they believe are actually and validly set by members of the profession.

The cult varies in strength from decade to decade but would appear to be near a maximum just now. Non-communicants cannot help but feel the lash of scorn from cultist colleagues. I suggest that the present ascendancy of the cult is the major force making "physics too tough."

Robert N. Varney Lockheed Missiles & Space Co.

Discovery of the electron

Those who believe J. J. Thomson discovered the electron (letter by W. B. Lewis, PHYSICS TODAY, May, page 12) should read A. Schuster, Proc. Roy. Soc. 47, 526 (1890); E. Wiechert, Sitzungsber, der physikal.ökon. Ges. Königsberg 38, 1 (1897) and Wied. Ann., Beiblätter, 21, 443 (1897); and W. Kaufmann, Wied. Ann. 61, 544 (1897) and 62, 598 (1897). Schuster, Wiechert and Kaufmann determined the ratio of e/mfor cathode rays, which is precisely what Thomson did, and in so doing they assumed the particle nature of the electron.

Schuster's value for e/m was poor, but Wiechert found it to be between 2×10^7 and 4×10^7 emu, and Kaufmann obtained first 10^7 and then 1.77×10^7 . These values are quite as good as Thomson's values of 7.7×10^6 and 1.17×10^7 as given in *Phil. Mag.* 44, 293 (1897). Indeed, later measurements of e/m (1.758796 \times 107) are extremely close to Kaufmann's value of 1.77×10^7 .

Paul T. Bailey
Massachusetts Institute of Technology

Exploration by computer?

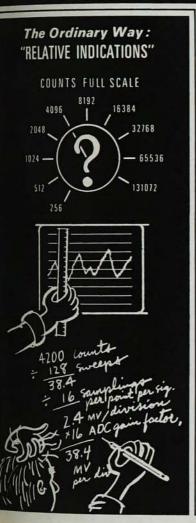
It is often stated that distant stars cannot be investigated by earth people because it would be impossible to build a rocket capable of traveling more than 5% of the velocity of light. Therefore, the argument goes, the exploration would take more than 100 years and could not be accomplished either because people would be incapable of enduring such long isolation or because the rocket would have to be too large (too expensive, too). These points were discussed by Herbert Malamud in reviewing Flight to the Stars by James Strong (PHYSICS TODAY, April, page 95).

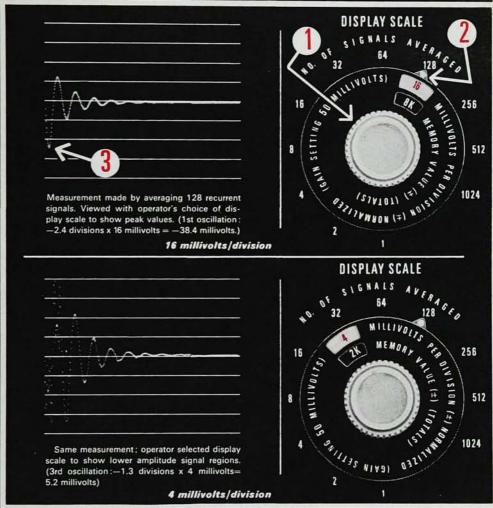
Why are we so preoccupied with sending human beings to explore the stars? Instead we could send instrument packages. Thus the size of the rockets could be reduced, and, if we have faith in our future (after all, we bury time capsules after world's fairs) the time required for interstellar exploration should be of no concern.

For the first several missions we might make the packages return to earth with their findings. In the future we could send miniature robots to occupy planets of distant stars and set up communication links with the earth using energy from sources on the planets.

Certainly we expect that a computer capable of human intelligence will be

The FT-1051 512 word memory averager. The FT-1052 has a 1024 word memory.


INSTANT NORMALIZING


ABSOLUTE MEASUREMENTS The Fabri-Tek Way:

Turn Display Scale knob until waveform in memory, shown on screen, is of suitable size.

Set movable index to number of signals measured.

First transient oscillation is at 2.4 divisions: -2.4 divisions x 16 -38.4 millivolts.

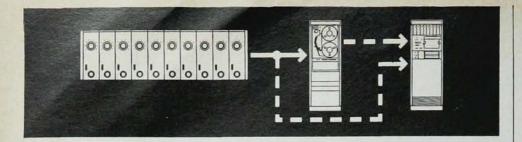
For all areas of science, the remarkable

FABRI-TEK SIGNAL AVERAGERS

abri-Tek manufactures the only totaling tional oscilloscope with calibration marks type signal averagers which have a direct reading Display Scale switch. The use of the movable normalizing index on the display control, illustrated, is practical because the only normalizing factor involved is the number of sweeps (and a decimal amplifier gain factor). Other averagers' normalizing factors involve averager sweep speed, dead time, converter gain factor, as well as number of sweeps.

The difference in ease of operation is ^{1emarkable}. This difference can be visualized by imagining measurements using a conven-

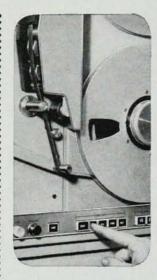
but no pointer on the control knob! Actually worse, because a conventional oscilloscope can be quickly calibrated by touching the probe to a calibration voltage. That cannot be done with an averager without clearing the memory first.


Calibration ease is only one of the exceptional features of this averager. Optimum noise reducing efficiency, greater than for any other averager, for example. Digitally measured post-trigger delays during external triggering; a wide choice of digitally produced sweep recurrence rates for auto-

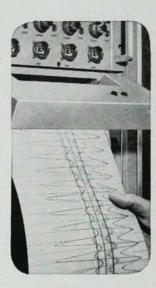
matic trigger; digital as well as analog cathode ray tube display; high speed builtin printer; built-in automatic pre-set stop control; and more, make this truly the finest signal averager you can buy.

For further information, please write or phone Fabri-Tek Incorporated Instrument Division, P. O. Box 4218, Madison, Wisconsin, Phone (608) 238-8476.

FABRI-TEK Instrument Division


Flexible Way to Amplify, Store and Display Low Level DC-75KC data

1000X Amplification, high common mode rejection


new wideband, chopper-less, all-solid-state, differential DC amplifier precisely measures thermocouple, strain gage and similar DC out-Model 8875A unmatched in 0.01% non-linearity, ±0.1% gain accuracy, ±0.01% gain stability and 120 db c.m. rejection (dc - 60 cps, up to 1K source imped. in either side of input) - for \$495, including the power supply. Ten of these compact units rack- or case-mount in only 5" x 19" of panel space, deliver 10v across 100 ohms with up to 1000' of cable, to drive magnetic tape recorder, oscillograph, etc. as described at right.

For complete specifications and application help, call your local Hewlett-Packard field engineering office, or write: Sanborn Division, Hewlett-Packard Company, 175 Wyman Street, Waltham, Mass. 02154. Europe H.P.S.A., 54 Route des Acacias, Geneva.

IRIG-compatible tape recording at lower cost

with 7- or 14-channel 3900A Series systems following 8875A Data Amplifiers. Record at 1% to 60 ips, pushbutton-selected tape speeds, from 100-100,000 cps in direct mode; 3 db response, better than 40 db signal/ noise ratio rms at 60 ips. Integral footage counter accurate to 99.95%, plug-in solid state amplifiers, snapon reels, no maintenance except occasional tape path cleaning. Fully-compatible with other IRIG-standards instrumentation, at basic system prices from \$6,185 (7 channels), or \$8,415 (14 channels), plus desired electronics. Store all your low level data signals on 3900Arecorded tape, then see . . .

High resolution graphic recordings immediately

made by slow-speed playback of taped signals into the new 8- to 24-channel 4500 Series dc-5kc optical oscillograph. (ultraviolet) Improved optical writing system and charts produce high contrast traces which may occupy entire 8" chart width, overlap, be positioned along a common baseline or anywhere on the chart. Traces clearly readable in room light immediately following recording, may be permanently preserved by chemical fixing. Entire dc-5 kc frequency range covered by one set of galvanometers, eliminating separate galvanometer inventories and tedious changes. Trace resolution aided by choice of 9 pushbutton chart speeds, 0.25 to 100 inches/sec.; full width time lines, amplitude lines partially or wholly removable, sequential trace interruption for trace identification. Complete 8-channel systems from \$7,000.

created within one or two centuries, if not sooner. Such computers could reproduce themselves, using materials from the distant planets. In effect we could colonize other planets without sending any human beings. Then, if we wanted to, we could go to those planets ourselves. In this fashion we could explore stars that are several thousand light-years away.

It is interesting to speculate about why we have not been contacted by computers from other planets. It may be because (a) there is no other civilization near the solar system, (b) other civilizations are also short-lived (?), (c) developed civilizations lose interest in exploration or (d) during the brief span of recorded civilization on earth, other civilizations have not had enough time to contact us (it would take at least 2000 years if the other civilization were 1000 light-years away).

It seems to me that if we are going to be contacted by other civilizations, it will be with small computers rather than by radio. To send a radio wave across several hundred lightyears, a distant civilization would have to have a strong power source. In addition it would have to assume that in the direction of the radio wave there existed a civilization (like ours) that was capable of receiving the signal and that was tuned to the proper frequency. Without first sending computers, the other civilization could not be sure of both assumptions. And to send a fairly wide-band signal to many stars for a long time (say about 100 years) would be quite expensive.

It seems more logical, therefore, to send a computer that could fly back to the sender and report on our existence. Then the next computer could carry a taped message and try to contact us. If the computer were knowledgeable, we could question it and determine, for example, the language of its senders. Once the first contact was established, it would be much easier for the other civilization to use radio signals because we would know their direction, frequency and bandwidth and the time of their arrival on earth.

Shoichi Yoshikawa Princeton University