COMING IN JULY

JOURNAL OF COMPUTATIONAL PHYSICS

Berni J. Alder, Sidney Fernbach and Manuel Rotenberg

A new journal devoted to papers on the computation aspects of physical problems, THE JOURNAL OF COMPUTATIONAL PHYSICS will not be concerned with the significance of the solutions to these problems per se, but rather with the techniques involved in the numerical solution of mathematical equations and in automated data reduction. The Journal will be invaluable to all concerned with the numerical solution of problems in the physical sciences and with more effective use of computers.

CONTENTS OF VOLUME 1, NUMBER 1:

CONTENTS OF VOLUME 1, NUMBER 1:

I. G. CAMERON, An Analysis of the Errors Caused by Using Artificial Viscosity Terms to Represent Steady State Shock Waves. CHARLES SCHWARTZ, Information Content of the Born Series. JOHN KILLEEN and SHIRLEY L. ROMPEL, A Computation for Studying the Formation of the Relativistic Electron Layer in Astron. DAVID WILLIAMSON, Stability of Difference Approximations to Certain Partial Differential Equations of Fluid Dynamics. J. L. ANDERSON, J. K. PERCUS and J. K. STEADMAN, Numerical Investigations of a Simple Model of a One-Dimensional Fluid. RICHARD A. GENTRY, ROBERT E. MARTIN and BART J. DALY, An Eulerian Differencing Method for Unsteady Compressible Flow Problems. W. PETER TROWER, A FORTRAN Program for Calculating Kinematical and Dynamical Quantities of Particle Interactions and Decays. W. PETER TROWER, A FORTRAN Subroutine for Calculating the Range-Energy Relation of Charged Particles in Chemical Elements. AKIO ARAKAWA, Computational Design for Long-Term Numerical Integration of the Equations of Fluid Motion: Two-Dimensional Incompressible Flow, Part I.

Subscription Information: Volume 1, 1966 (Published Quarterly), \$25.00

Plus \$1.50 postage outside U.S.A.
SEND FOR A SAMPLE COPY

ACADEMIC PRESS P NEW YORK AND LONDON 1111 FIFTH AVENUE, NEW YORK, N.Y. 10003

Opportunity for Senior Research Scientists in Magnetics, Fluid Flow and Experimental Physics at Honeywell, Minneapolis, Minnesota

Join Honeywell's well equipped Corporate Research Center where you will work in an atmosphere of true scientific professionalism, where personal dedication replaces the confining supervision you may find in other companies.

Magnetics

PhD in Physical Chemistry. Candidate interested in doing basic studies in electrochemistry and/or electrodeposited magnetic materials. Some experience in magnetics preferred but not essential.

PhD in Physics or Physical Chemistry. Prefer candidate with several years' experience and an interest in doing basic studies on thin ferromagnetic films with ultimate applicability to memory and logic devices. The work includes studies of anisotropy, coupled magnetic films and basic studies of films prepared by various deposition techniques. Must have a strong background in ferromagnetism, magnetic films or soft magnetic materials.

PhD in Physics. Background in solid state physics—electrochemistry—magnetics. Interested in doing basic studies in magnetic films-coupled films.

Fluid Flow

PhD in Physics or Mechanical Engineering. Should have a good knowledge of fluid mechanics and be interested in doing basic studies on flow dependent phenomena with ultimate applicability to flow meters.

Experimental Physics

PhD in Physics or equivalent. Candidate should be primarily a versatile experimental physicist. He should have experience or a strong interest in gaseous electronics or photo emission. He must communicate well with people who are responsible for device development and be able to do analytical work to interpret his results.

WE INVITE YOUR INQUIRY

Please air mail resume including salary requirements to: Mr. Marc D. Wanvig, Placement Administrator, 2701 Fourth Avenue South, Minneapolis, Minnesota 55408.

Honeywell

An Equal Opportunity Employer (M&F)

simple structural elements). Included are results of recent work on conical shells and the influence of localized loading on thin cylinders.

The reviewer formerly taught mechanics. and is currently involved in research work on stress analysis in layered systems,

Complex variables generally considered

THEORY OF FUNCTIONS OF A COMPLEX VARIABLE. By A. I. Markushevich. Transl. from the Russian by Richard A. Silverman. Vol. 1, 459 pp., Vol. 2, 333 pp. Prentice-Hall, Englewood Cliffs, N.J., 1965. \$32.00 per set.

Textbooks on complex variable

by J. Gillis

theory can fairly be divided into two types, according to whether the emphasis is on special functions (e.g. Whittaker and Watson) or on general theory (e.g. Titchmarsh). The one under review is an excellent example of the second type and the reader will search the index in vain for the words "Bessel," or "hypergeometric." However the book does contain some excellent chapters on a wide variety of topics which do not feature in the usual texts, for example the Poisson-Jenson formula and subharmonic functions.

The treatment is thorough and there is an abundance of illustrative examples. The quality and the clarity of the English prose are both considerably above the average for translations from the Russian. The printing and production are elegant and the whole eminently readable. In short it is the sort of text that a junior graduate or senior undergraduate could use with advantage.

The production is so polished that it seems churlish to criticize. However the feeling at the end is that the text could have been made more exciting. Thus the proof of Picard's theorem without the elliptic modular function was an exciting tour de force in its time, but only to those who knew the proof with that function. To those coming on the matter for the first time surely there is more life in the modular function proof, opening up new vistas of mathematics far beyond the theorem itself. Again the chapter on univalent functions does not mention Biebabach's conjecture. This conjecture may be no more basic to science than Goldbach's, but a great deal of very interesting mathematics has been created in the search for a proof. Its omission is typical of the disinterest in spice shown by so many textbooks of our time.

The reviewer is a member of the department of applied mathematics at the Weizmann Institute in Rehovoth, Israel.

Atomic collisions

ADVANCES IN ATOMIC AND MOLECU-LAR PHYSICS, VOLUME 1. D. R. Bates and Immanuel Estermann, eds. 408 pp. Academic Press, New York, 1965. \$13.50.

by Sanborn C. Brown

Physicists are trying in many different ways to publish the latest advances on the many research fronts in a way which will maximize the usefulness of survey papers for people interested in specific areas. The present volume is a most successful attempt to bring together review articles of the highest caliber concentrating on atomic and molecular collision phenomena.

There are six survey articles in this volume covering the subject matter of "Molecular orbital theory of the spin properties of conjugated molecules," "Electron affinities of atoms and molecules," "Atomic rearrangement collisions," "The production of rotational and vibrational transitions in encounters between molecules," "The study of intermolecular potentials with molecular beams at thermal energies," and "High intensity and high energy molecular beams." Each article is complete in itself with a detailed table of contents, and in every case a carefully prepared and inclusive list of references. In general the material covered concentrates on progress that has taken place in the last five years, and the contributors are all leaders in their particular fields of endeavor. The emphasis of the collection is on the theoretical side although experimental advances are not wholly neglected.

In many ways the book reminds one of the effort of S. Flügge with his Handbuch der Physik in both form, content, and objective. The editors, themselves, say in their foreward: "This serial publication is intended to occupy an intermediate position between a scientific journal and a monograph. Its main object is to provide survey articles in fields such as the following: atomic and molecular structure and spectra, masers and optical pumping, mass spectroscopy, collisions, transport phenomena, physical and chemical interactions with surfaces, and gas kinetic theory." Professors Bates and Estermann are to be congratulated on this first volume, and we look forward with expectation to forthcoming surveys and review articles in future volumes.

A professor of physics at MIT, the reviewer has worked in atomic and plasma physics for many years.

Incompressible fluids

SLOW VISCOUS FLOW. By W. E. Langlois. 229 pp. Macmillan, New York, 1964. \$8.95.

by L. Talbot

The contents of this book may be divided roughly into two parts. In the first half, the author sets out the fundamentals of Cartesian and curvilinear tensor analysis, and uses tensor methods to derive the basic kinematical and dynamical equations of viscous fluid flow. In the second half, methods are presented for some of the well known exact solutions of the incompressible Navier-Stokes equations, such as pipe flow, and the Rayleigh and Hamel problems. Stokes and Oseen flow past a sphere are discussed, and the method of matched asymptotic expansions is illustrated briefly through a presentation of the Proudman and Pearson calculation of the next term in the sphere-drag formula. Plane "creeping" flows, that is, flows where the inertia terms can be neglected, are discussed, and some conformal-mapping techniques for solving the biharmonic

LASER CRYSTALS and SYSTEMS

- . Gas Laser Systems & Components
- . Solid State Laser Systems & Components
- Injection Laser Systems & Components

SEMI-CONDUCTOR SINGLE CRYSTALS and MATERIALS

- Germanium
- Silicon
- III-V Compounds Gallium Arsenide, Antimonide Indium Phosphide, Arsenide, Antimonide Custom Compounds of III-Vs
- 11-VI Compounds Cadmium Sulfide, Selenide, Telluride Zinc Sulfide, Selenide, Telluride Custom Compounds of II-VIs

THERMAL ELECTRIC and MAGNETOTHERMOELECTRIC SINGLE CRYSTALS & MATERIALS

- . Bismuth, Antimony, Other Bismuth Alloys
- Lead Telluride
- . Cuprous Sulfide, Other Exotics

THIN FILM CHEMICALS and SUBSTRATES FOR CONTROLLED VACUUM DEPOSITION

- SEVAC* Grade Chemicals and Compounds
- . Single Crystal Substrates of

Metals **Bromides**

Oxides Indides

Chlorides Vacuum Exotic Compounds

*Trademark for vacuum deposition chemicals

For literature write Dept. PT-6

