ators, presumptuous politicians, pursuers of the bitch goddess; the recklessness, arrogance, and petulant demands of a self-anointed aristocracy; the social irresponsibility for which it is damned twice over: for the things it does and the things it fails to do. What can be set in the opposing column? Simply refusal to allow the pursuit of knowledge to degenerate into this. Science can change again, and this need not be forced by rough hands. Science can still turn to its responsible men who believe that the best of controls is self-control, and to its wise counselors for the young whose minds are still bright with curiosity."

The table of contents shows that part I of Science: U. S. A. is concerned with the state of the establishment, part II with the state of the art. In 15 chapters there is presented a view of today's laboratories, the new elite, genetics, drugs, automation, the military and peaceful atom, the "new" physicists, the "practical" chemists, and a warning about choices that will soon have to be made on how to spend lives and dollars among the attractive, competing paths open to science. The reader is not strongly aware of the structure of the book, for its style suggests conversation and free association.

Of particular interest to scientist and taxpayer should be Gilman's contrast of tax-paying and tax-exempt research and development corporations including such names as Aerospace, Arthur D. Little, Bell, Cornell, General Electric, IBM, Jackson, Lincoln, Mitre, Sandia, etc. Comments are offered on a range of controversial topics: President Eisenhower's warning against "acquisition of unwarranted influence . . . by the mili-Mohole tary-industrial complex," ("Мо-Но-Но and a Barrel Funds"), Dr. Oppenheimer, MURA, Project Ozma, etc. On page 316 we are told that the government owned 512 lie-detecting machines (computers) that cost \$428 000 and that the annual salaries of their operators came to \$4 million. The significance of that, and some of the other figures offered, is not obvious.

In places, the writing tends to be

flowery. The spectrograph is the "queen of scientific instruments," the electron microscope is the "young king," . . . the second law of thermodynamics is Thanatos. Some statements are puzzling: "Though the average statistician cannot be held responsible for the announcement that 50 per cent of the nation's schoolchildren are below average, he cannot escape blame for leveling creativity down to an average mediocrity." How? A few statements are misleading: "E. O. Lawrence invented his cyclotron at Berkeley" (p. 124), or a suggestion for a bomb to be "dropped" from a spaceplatform satellite (p. 366). Some criticism seems pointless. Twice Gilman berates Yale for having "disdained" and "expelled" its center of alcohol studies (p. 109, 111), apparently ignoring the university's stated academic policies applicable in this change. A little farther on (p. 205) Yale appears in an odd comparison: "Counting one suicide every twentysix minutes, the mental health people triumphantly name suicide as America's ninth (and Yale's second) 'most preventable fatal sickness' ".

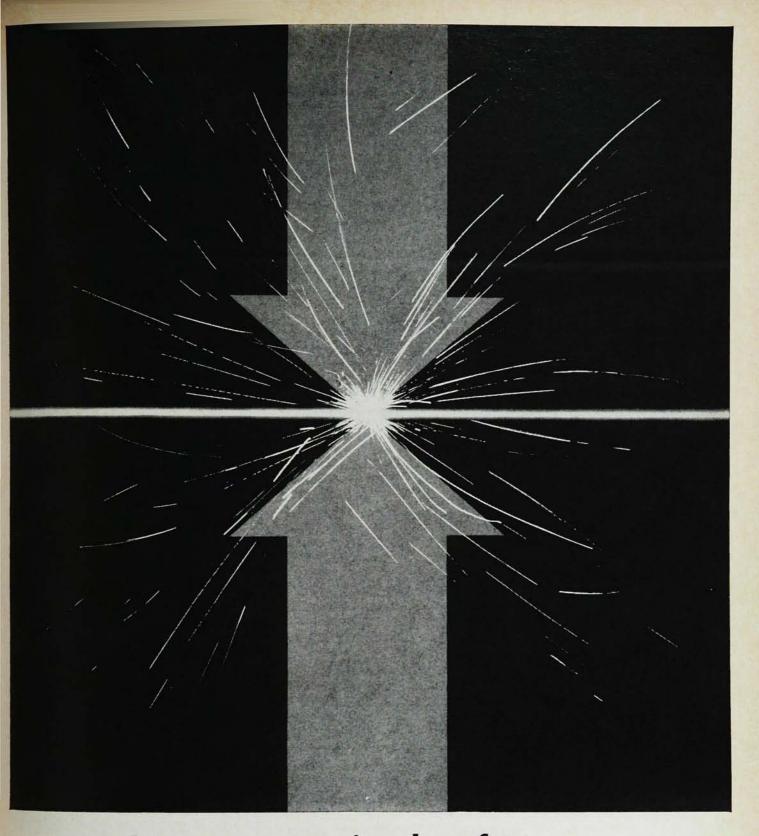
While a reader may take exception to individual statements he will welcome Gilman's book if he believes, as Gilman does, that (1) the powers given science carry responsibility, and (2) the money poured into science carries obligations—it must not build merely a playground for the new elite.

The reviewer is professor of physics at The Pennsylvania State University.

A practitioner's handbook

FORMULAS FOR STRESS AND STRAIN (4th ed.). By Raymond J. Roark, 432 pp. McGraw-Hill, New York, 1965, \$12.50.

by Jacques E. Romain


Professor Roark, emeritus professor of mechanics at the University of Wisconsin, has gained a wide experience in stress analysis and design in the course of some forty years of consulting work. He felt the need for a handbook of stress and strain design formulas, in which the design engineers would find, in a compact form, data that are otherwise scattered in an extensive literature. This concern was the origin of the present book, whose first edition goes back to 1938.

This is no textbook. The sole emphasis is on the extreme values needed by the design engineer (critical stresses and deflections in structures). The description of stress distributions (e.g., isostatics patterns) is outside the scope of the book. No derivation is given, but numerous bibliographic references are mentioned for the benefit of the reader who requires additional or more detailed information on a given problem.

An introductory part (amounting to some 70 pages) contains a glossary and a list of general symbols (the particular notations are indicated at the head of each table) and a brief statement of the essential facts of materials behavior under stress, of the main principles of mechanics likely to be useful in applying the formulas, and of experimental methods in stress analysis.

Two general purpose chapters contain formulas on geometrical properties of a plane area and on the general relationships between stresses and strains in a material element. The bulk of the book consists of formulas (mostly in tabular form) on the following classified topics: beams in flexure, torsion, flat plates, columns and other compression members, pressure vessels and pipes, bodies under direct bearing and shear stress, elastic stability (buckling), dynamic and temperature stresses. In each section, in addition to the typical case, a variety of special cases is considered, representing peculiarities of form, proportions and conditions of loading. The book is concluded with miscellaneous tables of design factors and of properties of materials. A detailed subject index will help the reader to retrieve a specific piece of information.

As compared to the previous editions, this revised fourth edition contains new material on such subjects as: allowable stress and factor of safety, fatigue, simultaneous axial and transverse loading, plastic analysis and mechanical vibrations (table of proper frequencies for a number of

A new magnitude of power in cw gas lasers

Perkin-Elmer presents a molecular gas laser generating 10 watts cw power at a wave-length of 10.6μ . This new continuous flow gas laser operates at unusually high efficiency. Available on 90 days'

delivery, the new Model 6200 Laser is priced at \$8,950,f.o.b. Norwalk, Conn. Write for details to Electronic Products Division, Perkin-Elmer Corp., XXX Main Avenue, Norwalk, Conn.

PERKIN ELMER

COMING IN JULY

JOURNAL OF COMPUTATIONAL PHYSICS

Berni J. Alder, Sidney Fernbach and Manuel Rotenberg

A new journal devoted to papers on the computation aspects of physical problems, THE JOURNAL OF COMPUTATIONAL PHYSICS will not be concerned with the significance of the solutions to these problems per se, but rather with the techniques involved in the numerical solution of mathematical equations and in automated data reduction. The Journal will be invaluable to all concerned with the numerical solution of problems in the physical sciences and with more effective use of computers.

CONTENTS OF VOLUME 1, NUMBER 1:

CONTENTS OF VOLUME 1, NUMBER 1:

I. G. CAMERON, An Analysis of the Errors Caused by Using Artificial Viscosity Terms to Represent Steady State Shock Waves. CHARLES SCHWARTZ, Information Content of the Born Series. JOHN KILLEEN and SHIRLEY L. ROMPEL, A Computation for Studying the Formation of the Relativistic Electron Layer in Astron. DAVID WILLIAMSON, Stability of Difference Approximations to Certain Partial Differential Equations of Fluid Dynamics. J. L. ANDERSON, J. K. PERCUS and J. K. STEADMAN, Numerical Investigations of a Simple Model of a One-Dimensional Fluid. RICHARD A. GENTRY, ROBERT E. MARTIN and BART J. DALY, An Eulerian Differencing Method for Unsteady Compressible Flow Problems. W. PETER TROWER, A FORTRAN Program for Calculating Kinematical and Dynamical Quantities of Particle Interactions and Decays. W. PETER TROWER, A FORTRAN Subroutine for Calculating the Range-Energy Relation of Charged Particles in Chemical Elements. AKIO ARAKAWA, Computational Design for Long-Term Numerical Integration of the Equations of Fluid Motion: Two-Dimensional Incompressible Flow, Part I. Subscription Information:

Subscription Information: Volume 1, 1966 (Published Quarterly), \$25.00

Plus \$1.50 postage outside U.S.A.
SEND FOR A SAMPLE COPY

ACADEMIC PRESS P NEW YORK AND LONDON 1111 FIFTH AVENUE, NEW YORK, N.Y. 10003

Opportunity for Senior Research Scientists in Magnetics, Fluid Flow and Experimental Physics at Honeywell, Minneapolis, Minnesota

Join Honeywell's well equipped Corporate Research Center where you will work in an atmosphere of true scientific professionalism, where personal dedication replaces the confining supervision you may find in other companies.

Magnetics

PhD in Physical Chemistry. Candidate interested in doing basic studies in electrochemistry and/or electrodeposited magnetic materials. Some experience in magnetics preferred but not essential.

PhD in Physics or Physical Chemistry. Prefer candidate with several years' experience and an interest in doing basic studies on thin ferromagnetic films with ultimate applicability to memory and logic devices. The work includes studies of anisotropy, coupled magnetic films and basic studies of films prepared by various deposition techniques. Must have a strong background in ferromagnetism, magnetic films or soft magnetic materials.

PhD in Physics. Background in solid state physics—electrochemistry—magnetics. Interested in doing basic studies in magnetic films-coupled films.

Fluid Flow

PhD in Physics or Mechanical Engineering. Should have a good knowledge of fluid mechanics and be interested in doing basic studies on flow dependent phenomena with ultimate applicability to flow meters.

Experimental Physics

PhD in Physics or equivalent. Candidate should be primarily a versatile experimental physicist. He should have experience or a strong interest in gaseous electronics or photo emission. He must communicate well with people who are responsible for device development and be able to do analytical work to interpret his results.

WE INVITE YOUR INQUIRY

Please air mail resume including salary requirements to: Mr. Marc D. Wanvig, Placement Administrator, 2701 Fourth Avenue South, Minneapolis, Minnesota 55408.

Honeywell

An Equal Opportunity Employer (M&F)

simple structural elements). Included are results of recent work on conical shells and the influence of localized loading on thin cylinders.

The reviewer formerly taught mechanics. and is currently involved in research work on stress analysis in layered systems,

Complex variables generally considered

THEORY OF FUNCTIONS OF A COMPLEX VARIABLE. By A. I. Markushevich. Transl. from the Russian by Richard A. Silverman. Vol. 1, 459 pp., Vol. 2, 333 pp. Prentice-Hall, Englewood Cliffs, N.J., 1965. \$32.00 per set.

Textbooks on complex variable

by J. Gillis

theory can fairly be divided into two types, according to whether the emphasis is on special functions (e.g. Whittaker and Watson) or on general theory (e.g. Titchmarsh). The one under review is an excellent example of the second type and the reader will search the index in vain for the words "Bessel," or "hypergeometric." However the book does contain some excellent chapters on a wide variety of topics which do not feature in the usual texts, for example the Poisson-Jenson formula and subharmonic functions.

The treatment is thorough and there is an abundance of illustrative examples. The quality and the clarity of the English prose are both considerably above the average for translations from the Russian. The printing and production are elegant and the whole eminently readable. In short it is the sort of text that a junior graduate or senior undergraduate could use with advantage.

The production is so polished that it seems churlish to criticize. However the feeling at the end is that the text could have been made more exciting. Thus the proof of Picard's theorem without the elliptic modular function was an exciting tour de force in its time, but only to those who knew the proof with that function. To those coming on the matter for the first time surely there is