Reliable, long life microwave sources for research applications

- 50 GHz to 101 GHz
- · 50 mW to 300 mW
- Single mode operation
- Excellent frequency stability
- 1 year/500 hour warranty

Raytheon reflex klystron sources are available at any desired frequency from 50 GHz to 101 GHz, trimmable ±1.0 GHz. Average power outputs range from 50 to 300 milliwatts, depending upon frequency. Standard 10 GHz tuning ranges and higher power levels are also available.

You are invited to discuss your millimeter wave requirements with senior engineers of our klystron laboratory. Call (617) 899-8400, Extension 3505. Or write: Raytheon Company, Microwave and Power Tube Division, Dept. 3035, Willow Street, Waltham, Mass. 02154.

be to accept only articles that are in accord with some predetermined (and announced) criterion of completeness in the development of a definite "thesis" that is new and is exploited sufficiently in terms of mathematical development and comparison with experiment to make a bona fide, convincing case for the objective reader. Generally, then, such articles should be based on long, careful investigations, covering as many as possible of the avenues that follow from the central thesis. Because of the nature of such articles, the journal should not be inundated with countless manuscripts.

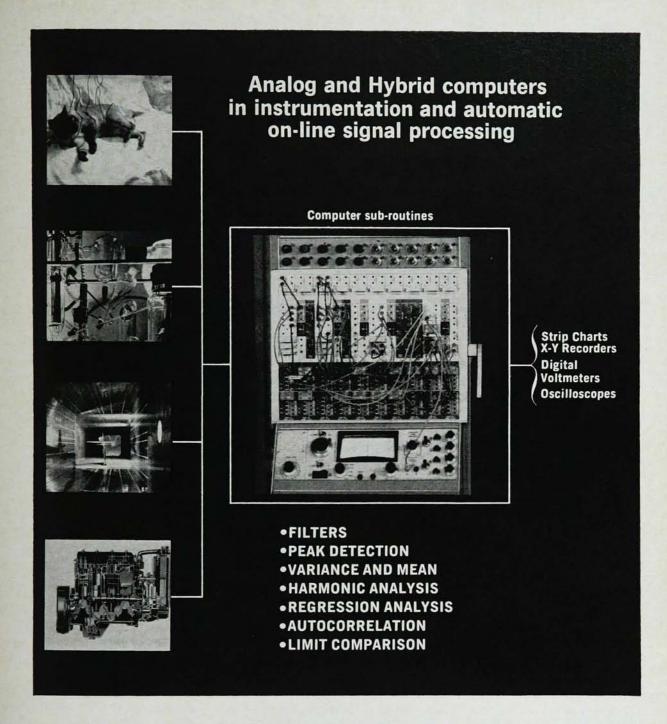
I hope the existence of such a journal would induce researchers to carry their investigations much further than is customary today before the results are written up. The journal could also relieve some of the burden on other journals that are now flooded with short articles on the initial stages of theoretical and experimental studies.

In addition to the requirement of completeness, the only criteria that should be used to judge the acceptability of a manuscript for the proposed journal should be originality, logical consistency and mathematical consistency. I propose that if the reviewing staff of the journal found an article that satisfied those four criteria

-regardless of whether or not its central thesis departed from the thinking of the majority of researchers—the journal would be obliged to accept the article for publication.

I feel that such a journal would indeed aid the individualist by giving him a voice-on condition that he had not only speculated but also followed through with a rigorous mathematical and experimental development and had made sufficient comparison with the properties of nature. In addition to the possible relief that such a journal might provide for other AIP journals, it might also, in the long run, help reduce the tensions of the "publish-or-perish" policy in many institutions by relieving the pressure on scientists to publish results of their studies while the studies are still in the preliminary stages.

I hope that my fellow members of The American Physical Society, and members of the other AIP societies, will consider these proposals to aid the individualist by ensuring and facilitating, as far as possible, his freedom of inquiry in present-day science. I hope that this column might be used for further discussion of these and other suggestions to this end.


Mendel Sachs
Boston University

Is physics too tough? Some comments on our April editorial-

All my experience indicates to me that undergraduate physics as taught in many American colleges and universities is too tough in several ways, and that the responsibility for this situation generally lies in two directions. First, there is the regrettable circumstance that section teaching in the large general course is often delegated to inexperienced graduate students, many of whom regard such an assignment as a menial chore to be completed with as much dispatch as possible so they can get back to matters they consider more important.

More mature staff members, who should know better, frequently harbor the same kind of resentment and unconsciously take it out on the hapless student by expecting him to acquire something of their own degree of seasoned understanding of the subject in a year's struggle with far too much detailed, strange material. This kind of teacher is likely to give quizzes and examinations consisting exclusively of numerical problems. He is the one who boasts, "We show them that we mean business by flunking about 25 to 30 per cent each year." A mean business, indeed.

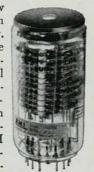
Second, if the situation seems disturbing in connection with prospective majors in physics and other sciences, it is even more alarming with respect to students in other fields. These students, it is generally agreed, should gain some real acquaintance with science as part of their general education—the now-famous "two cultures" theme. Here the difficulties are increased by the highly miscellaneous backgrounds and preparation of the prospective learners and by a preva-

Write for your free copy of this vital report

Important new information is now available on the use of analog and hybrid computers for processing and statistical analysis of continuous signals. This report describes how the general purpose analog computer can provide an economical and flexible approach to your on-line data reduction requirements. The expensive intermediate steps of digitizing and manual calculations are eliminated. Answers are immediately available for oscilloscope display or for plotting on x-y and strip chart recorders.

The modern analog/hybrid computer eliminates design of special purpose packages of operational

amplifiers and other analog components, whose application is limited to a single task. Simple patching replaces (and does away with the need for knowledge of) electronic circuit design. Pre-patch panels permit storage of many different data reduction routines.


The report also describes the value of the analog/ hybrid computer as a tool for the simulation or modeling of dynamic systems.

EAI ELECTRONIC ASSOCIATES, INC., West Long Branch, New Jersey

Measuring low light levels

dark currents coupled with maximum useful sensitivity. The EMI 6256, a 13-stage venetian blind 2" photomultiplier tube has the essential characteristics that are necessary for low light level applications. The unique 10mm cathode-DI geometry, together with the ultra-stable EMI venetian blind design, has resulted in its widely successful use in astronomy, biology

and spectrophotometry. The EMI 6256B has a quartz window and the S-11 cathode (S-13) which has a peak quantum efficiency of 17% at 4,200 A. The EMI type 6256S has 5 to 10 times lower dark current than the 6256B, and should be used when system performance is dark current limited. This type is also available for visible light applications as 9502B/9502S, or with 11 dynodes as 6094B/6094S. Many other EMI photomultiplier tubes are available for special applications from stock in sizes from 1" to 12". EMI photomultiplier tubes are available through qualified engineering representatives located in major marketing areas throughout the United States. A request on your company letterhead will bring you the name of your nearest representative as well as a copy of our latest catalog.

80 Express St., Plainview, L.I., N.Y. 516-433-5900 TWX 516-433-8790 *EMI ELECTRONICS, LTD. lent fear of-in some cases antipathy toward-science.

Happily, in a number of institutions where interested and capable staff members have been allowed to initiate and develop special programs for nonscience students, the results have been encouraging. Much more experimentation and innovation is needed. The main thing is that administrators and staff members must convince themselves that such efforts are respectable and worth while.

James Clerk Maxwell's words, expressed a century ago, are as pertinent as ever: "For the sake of persons of different types, scientific truth should be presented in different forms and should be regarded as equally scientific, whether it appears in the robust form and vivid coloring of a physical illustration, or in the tenuity and paleness of a symbolic expression."

Ira M. Freeman Rutgers University

I am wondering whether the time has come to hope that some small steps could be taken to modify our present attitudes. It seems to me that something might be done at the high-school level to make physics courses less frightening. There are, of course, many reasons why high-school teachers tend to set their goals very high and to try, for example, to cover all of the PSSC material in their courses. But I think one of the principal sources of pressure is the college-entrance examination.

Suppose the college-board examination in physics were limited to some rather small fraction of the usual coverage. Presumably every highschool course could easily cover this minimum material in perhaps one third of the average course. After this material was covered, the highschool teacher would be free to go as fast or as slow as his own and his students' capabilities dictated. It might even be possible to pursuade high-school teachers that the physics course should be graded in a more relaxed way than usual to avoid scaring students away from physics.

Although I concede that the direction we have been taking with the PSSC curriculum is correct, the program has been far too ambitious and the net result has been seriously damaging to physics and other science in this country. For most high-school students, physics taken at the usual pace is very difficult compared, for instance, with mathematics. I am therefore unimpressed with the attitude that students should be pushed hard and fast in physics in high school. I would much rather see physics aimed more directly at students who will not go on in science, and let physics for science students at the high-school level be primarily a holding operation to maintain their interest. I would much rather see time spent on increasing the mathematics background at the high-school level.

Arthur F. Kip University of California (Berkeley)

Could we have some discussion in the columns of your journal on the so-called "forced flunk" and related practices in education in the physical sciences? I have been told by a dozen students at a large state-supported college that in the basic physical-science courses, no more than half of any class is permitted to go on to a succeeding semester regardless of the quality of their work; they are so informed by their instructors. A class of 40 in freshman chemistry, they say, is normally down to five or six students by the beginning of the second sophomore term.

Similarly, many engineering and physics students and recent graduates have observed to me that, on the average, it now takes 4.5 years or more to fulfill the requirements for a bachelor's degree.

These "get tough" policies are not announced to the public nor explained to high-school counselors, so far as I can find. Yet it appears that they must exist.

Lawrence T. Fleming Pasadena, Calif.

Physicists, for the most part, seem to have a certain callousness about the uninitiated. This attitude is surely self-defeating. Our premise is that beginning students interest themselves in physical phenomena rather than in physical abstractions. Professionals seem to do the reverse, for

Soviet Physics – DOKLADY*

two to four pages in length, on current

Russian work ranging through the entire spectrum of research in pure, applied and mathematical physics, and many related areas.

Russian editorial policy for this journal emphasizes original research, breadth of coverage, brevity of contributions, and speed of publication — attributes of great interest to physicists everywhere.

The listings of the subject index headings, printed overleaf, suggest the broad view of Soviet research activity conveyed by this periodical, a translation of the physics sections of **Doklady Akademii Nauk SSSR** – the Proceedings of the Academy of Sciences, USSR.

* In the original, the Proceedings appear thirty-six times a year, six volumes of six issues each. The physics sections are accumulated and published monthly in English as SOVIET PHYSICS—DOKLADY. Subscriptions or inquiries are invited.

		SOVIET PHYSICS-DOKLADY, Vo
11, Nos. 1- 1966):	12 (material published	in the original Russian journal in
1300).	Domestic	Foreign
	□ \$45.00	□ \$49.00
Name		
Address		

Soviet Physics—

DOKLADY

Subject Index Headings

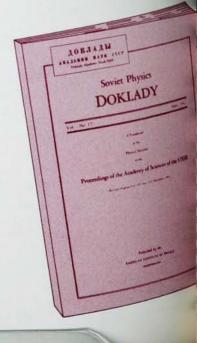
Acoustics Aerodynamics Astrophysics Atomic Structure and Spectra Chemical Physics Crystalline State Cybernetics and Control Theory **Detonation and Shock** Waves Elasticity and Plasticity Electrical Discharges Electrical Properties, Effects and Engineering Electromagnetism Electron and Ion Optics Electrons and Positrons Elementary Particle Interactions Ferromagnetics and Ferroelectrics

Field Theory

Films, Thin Fluid Dynamics Friction and Wear Gamma Rays Gases Glass lons and lonization Irradiation Effects Magnetic Properties and Effects Isotopes Liquids Magnetohydrodynamics Masers and Lasers Mathematical Physics Mechanics Mesons Methods and Instrumentation Molecular Structure and Spectra Optical Properties and **Techniques**

Photoelectric and Photomagnetic Phenomena **Plasmas** Polymers Quantum Electrodynamics **Ouantum Mechanics** Radiation Relativity and Gravitation Resonance Scattering Semiconductors Statistical Mechanics and Thermodynamics Superconductivity and Superfluidity Surface Properties Thermal Properties and Heat Transfer Ultrasonics Vacuum Technology X-Ravs

BUSINESS REPLY MAIL
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES


POSTAGE WILL BE PAID BY

DEPT. AP

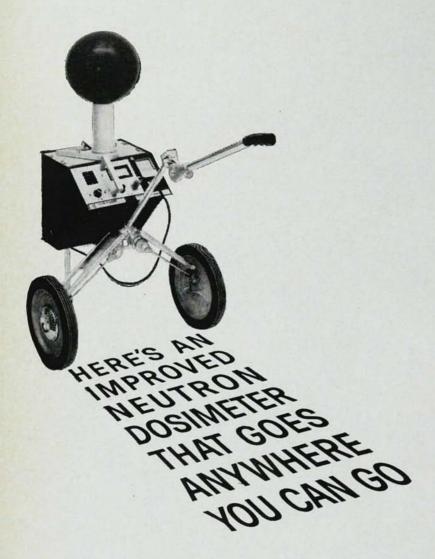
AMERICAN INSTITUTE OF PHYSICS

335 East 45th Street New York, New York 10017

Beckman & Whitley Laser Scanners are now at work for RCA, IBM, Hughes and TRW Systems.

Can we swing a laser beam your way?

If we can't, probably nobody else can. Beckman & Whitley devices, such as Model IS2 shown above, are delecting laser beams in a variety of unique systems for ICA, Hughes, Raytheon, TRW Systems, IBM and others. We make optomechanical, piezo-optical, and electroptical laser beam deflectors custom designed with specifications to meet the particular requirements of individal recording, storage, retrieval, and facsimile systems. For example, our optomechanical deflectors scan laser eams continuously or intermittently through up to 0,000 beam diameters per scan at rates up to 3.6 x 107 eam diameters per second. Spot size can be as small as microns with sufficient power to record on very slow Im at top deflection speed.


Beckman & Whitley optomechanical deflectors consist asically of spot forming optics, rotating mirror and syn-

chronous motor and are available with collection optics, film transport, photomultiplier, laser and laser beam modulator. These components can be combined in many configurations to meet specific system requirements.

For applications that require selective laser beam deflection, Beckman & Whitley also offers custom piezo and electro-optical devices.

Can we swing a laser beam your way? For information, contact: Light Deflector Applications, Beckman & Whitley, Inc., 441 Whisman Road, Mountain View, California 94040. Phone: (415) 968-6220.

Beckman & Whitley
A SUBSIDIARY OF TECHNICAL OPERATIONS, INC.

Take the Nemo® spherical neutron dosimeterupor down stairs, over cables, or anywhere you wish to roll it on its easy-to-move caddie cart. Remove the sphere and ratemeter unit and walk with them. Both units weigh only about 27 pounds, just about the weight of your two-suiter.

The Model 9140 spherical dosimeter, like its popular predecessor, Model 9120, closely approximates human body dose for all neutrons from thermal to 10 Mev energy. Its self-contained readout unit can be either a battery-oper-

ated ratemeter with optional chart recorder or a 106 capacity a-c operated scaler. Its detector head contains a Li61 (Eu) crystal surrounded by a 10-inch sphere of polyethylene.

Please write for latest performance data.

TEXAS NUCLEAR

373 Howard Ave., Des Plaines, Illinois 60018

In Europe: Donker Curtiusstraat 7, Amsterdam W

good and proper reasons, in advancing physical knowledge. The intolerance of one for the other causes frustrations that are difficult to overcome.

H. Craig Sipe George Peabody College for Teachers

The American Society of Mechanical Engineers has asked its members to comment on engineering curricula. Two of my comments are as follows:

- Is there too much non-essential course work in present curricula? One example is mathematics. It has been noted that after leaving college, well over 90% of the graduate engineers never use mathematics more complicated than elementary calculus and probably 80% never use calculus.
- Are some courses of very little use to graduate engineers? Probably the best example is physics. This course, extremely fundamental to engineering, has been changed from a wonderful set of physical concepts to a mathematical mumble-jumble. It is no longer useful in the main stream of an engineer's thinking but only as a specialized thought pattern to be used on certain occasions.

Our youngest daughter recently completed a high-school course in physics. It was a "tough" course and she obtained high grades. The sad thing was that she did not learn anything significant about heat, mechanics, sound, electricity or magnetism, but [she did learn] some "new approaches" to nuclear phenomena, plasma physics, astronomy and elementary-particle physics. She had enough of physics and still doesn't know what happens when water freezes or boils.

Maurice Nelles Westinghouse Electric Corp. Baltimore, Md.

A correction: We regret the following typographical errors in the letter by W. B. Lewis published last month: The name "Leland" should be "Lenard" and "Lamour" should be "Larmor." In the next-to-last paragraph, "... from this theory (by then current) ..." should be "... from this by theory (then current)..." In the last paragraph, "... distribute as in ..." should read "... distribute as if...."