
logical investigation of space and planetary environments and their effect on human physiology, and proposed sending scientist-passengers into space along with trained astronauts on certain future missions.

Rf beam separator at Brookhaven

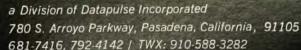
A new radio-frequency beam separator at Brookhaven National Laboratory has produced exposures of negative and positive K mesons at a momentum of 12.8 GeV/c, the largest momentum obtained to date with separated kaon beams. The separator, a joint project of the Brookhaven Accelerator Department and Yale University, was completed at the end of 1965. A similar instrument is in operation at CERN, producing kaon beams of 10 GeV/c. Before completion of the rf separator, Brookhaven used an electrostatic separator that produced kaon beams up to 5.5 GeV/c. The new facility will make possible studies of interactions of antiprotons, kaons, and pions at selected momenta between 7 and 18 GeV/c.

Both electrostatic and rf separators depend on the mass-dependent velocity differences among particles in a beam of well defined momentum. In an electrostatic separator, a static electric field is applied transversely to the flight of the beam. Particles of different velocities traverse the field in different times, and, in consequence, are deflected sideways by different amounts. An rf separator uses two short rf deflectors separated by a drift space. Here transit time determines the relative phase of the deflection, and the system has the advantage that the resultant deflection can be made twice the individual deflection for one type of particle at the same time as it is made to cancel for another. Furthermore, at high frequencies a small transit-time difference can correspond to a large phase difference.

In the Brookhaven separator, deflections are imparted to the particles by two iris-loaded waveguides, each 3 meters long, set 40 meters apart. The waveguides resemble electron linacs in their mechanical structure, but the power propagates as a hybrid backward wave. The travelling waves are synchronous with the particle and have a field configuration that pro-

Energy out of FOCUS?

DeMornay-Bonardi LENS CORRECTED HORNS can be tailor-made to focus microwave energy as needed for combustion diagnostics, doppler velocity measurements, measurement of shock phenomena, chemical reactions, and many other plasma research applications.



Designed for use with DeMornay-Bonardi interferometer systems, the LENS CORRECTED HORN can be a critically important component to any interferometer. Frequency coverage is complete. Bloomed dielectric lens minimizes reflection. Standardized design procedures assure quality and performance and permit low-cost, rapid fabrication.

We are specialists in the design of complete interferometer systems. Write for literature describing lens corrected horn systems for plasma diagnostics, free flame spectroscopy, and other applications. Contact us or our representative in your area for immediate assistance.

the Ultimate in Microwave Systems and Components

DE MORNAY - BONARDI

THE OPACITY FILE

We are offering a complete abstract file and abstracting service in the field of gaseous opacities. The abstract provided does not merely consist of a repetition of the author's abstract. Rather, the serious attempt is made to provide as much information from a given article as is possible and useful to the user. information which, in most cases, will preclude the necessity of reference to the article itself. Whether it be the dimensions of a Franck-Condon array, the particular spectral region covered by a photoionization experiment or the number of shifted lines studied in a particular band, the information is there and immediately available to you. The file has been divided into twelve categories:

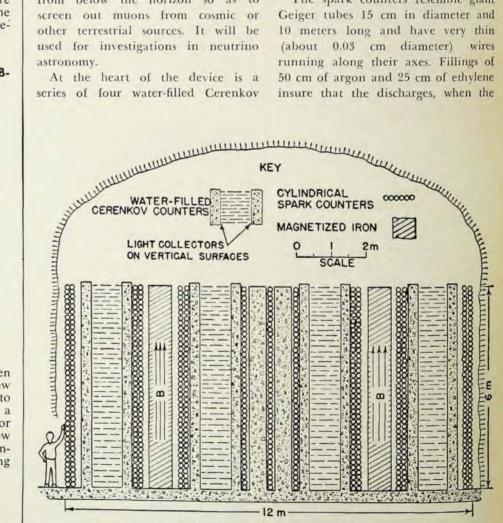
OPACITIES (GENERAL) DIATOMIC EMISSIVITIES OR AB-SORPTION COEFFICIENTS POLYATOMIC EMISSIVITIES OR ABSORPTION COEFFICIENTS **BOUND FREE CONTINUA** (ATOMIC) **BOUND FREE CONTINUA** (MOLECULAR) FREE FREE (BREMSSTRAHLUNG) CONTINUA VIBRATIONAL OSCILLATOR STRENGTHS (DIATOMIC) VIBRATIONAL OSCILLATOR STRENGTHS (POLYATOMIC) **ELECTRONIC OSCILLATOR** STRENGTHS (MOLECULAR) **ELECTRONIC OSCILLATOR** STRENGTHS (ATOMIC) ROTATIONAL OSCILLATOR STRENGTHS LINE SHAPE

At present, there are some sixteen hundred cards in the file with new cards being added at the rate of fifty to one hundred per month. Purchase of a file entitles the buyer to the service for one year. In addition, should he allow his subscription to expire, he will continue to receive those cards covering publications dated prior to expiration.

For further information write,

Box 0 710 Mill Street Reno, Nevada 89502 vides aberration-free transverse deflections. The deflectors are powered from permanent-magnet focused klystrons capable of delivering 20 MW in pulses of 5 microseconds when triggered at the repetition rate of the alternating gradient synchrotron. The operating frequency of the rf source is 2.865 GHz, generated by a phaselocked source with quartz stability. For good particle separation, the amplitude and phase of the deflecting rf fields must be held constant to a

high degree of accuracy, and to achieve this, many servo loops are incorporated in the equipment. Nevertheless, Brookhaven people say, the operation proved to be simple and reliable.


The separator was designed and developed by Harold Hahn and Henry Halama of the BNL Accelerator Department. The beam design was carried out by Horst Foelsche of BNL and Jack Sandweiss and Joseph Lach of Yale.

It's a spark, it's a pop, it's a neutrino

An underground cosmic-ray neutrinos detector is expected to start operation sometime this summer in a mine near the University of Utah. The installation, an array of counters 6 × 12 × 10 meters, will actually count muons produced by interaction of neutrinos with the surrounding rock. The setup is biassed to favor muons coming from below the horizon so as to screen out muons from cosmic or

counters with directional properties. These are $1 \times 6 \times 10$ meter tanks, two of whose vertical surfaces are lined with 113 light collectors each. The light collectors gather Cerenkov light produced by muons travelling transversely. The light collectors then trigger specially designed cylindrical spark counters.

The spark counters resemble giant Geiger tubes 15 cm in diameter and 10 meters long and have very thin (about 0.03 cm diameter) wires running along their axes. Fillings of 50 cm of argon and 25 cm of ethylene insure that the discharges, when the

NEUTRINO TELESCOPE arrangement at University of Utah