

These scientists will see the results of their work in action

П

П

1

1

П

П

П

П

П

1

On the blackboard before these men is a part of the mathematical model they are developing for the Center for Naval Analyses of The Franklin Institute to help the Navy coordinate sea, air, undersea, and amphibious forces in an important operation.

The Navy will use this and other CNA studies as part of its decision-making apparatus on such matters as force and systems requirements and disposition, tactics, strategy, weapons evaluation, and logistics.

A private scientific organization engaged in operations research and systems analysis for the Navy and Marine Corps, CNA needs graduate physical scientists, systems analysts, mathematicians, statisticians, research engineers, and operations research analysts.

CNA staff members must have the ability to apply the scientific method in new contexts . . . to aid in the formulation of new operational requirements . . . to develop and test mathematical models.

CNA provides for professional growth and recognition; the opportunity for stimulating work important to national security, and competitive salaries with the customary fringe benefits attached to responsible positions.

Send resume and letter to: James P. Hibarger CENTER FOR NAVAL ANAL

CENTER FOR NAVAL ANALYSES 1401 Wilson Boulevard Arlington, Va. 22209

CNA

П

CENTER FOR NAVAL ANALYSES
OF THE FRANKLIN INSTITUTE

INS - Institute of Naval Studies SEG - Systems Evaluation Group OEG - Operations Evaluation Group NAVWAG - Naval Warfare Analysis Group MCOAG - Marine Corps Operations Analysis Group

An equal opportunity employer

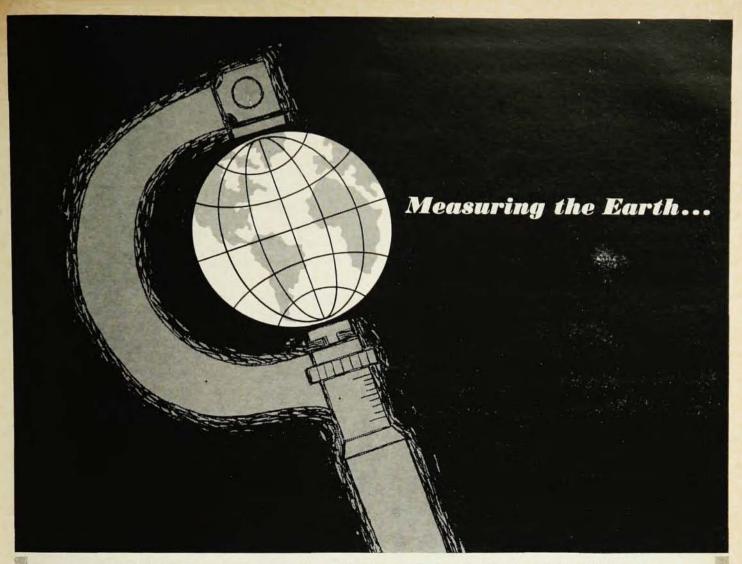
leads to the problem, at present under study, of how to describe symmetries of internal hadron states, when taken to infinite momentum, bearing in mind that in a quark model, for example, there will be quark spin and orbital angular momentum that can mix under Lorentz transformation.

Magnetic monopoles. In an interesting paper Julian Schwinger (Havard) discussed the old problem of magnetic monopoles. From gauge invariance he showed first that eg/hc is an integer (g is the elementary magnetic charge in suitable units). Dirac had previously obtained the weaker result that this quantity should be a half integer. Schwinger's result has as one consequence that if e and g are at rest, the system possesses an integral, rather than half-integral angular momentum along the line joining them, a situation somewhat less jarring to the intuition. Finally, he showed that, contrary to the recent assertions of others, a Lorentz-covariant electrodynamics can be formulated with inclusion of magnetic monopoles.

The conference concluded as the previous two Coral Gables conferences have, with a summary talk by Yuval Ne'eman (Tel Aviv). Pointing out that during the past year we had begun to take a less abstract view of the generators of groups, he mentioned three way in which group theory is now being used: (1) to classify hadron states, (2) to provide operators to connect states, which form algebras relating transitions, and finally, (3) to provide symmetries of the dynamics, when the operators commute with important pieces of the Hamiltonian. It does not matter which form of dynamics (quarks, bootstraps, etc.) is eventually adopted.

> Laurie M. Brown Northwestern University

IEEE ultrasonics symposium


Rapidly growing research, applications and future possibilities made an impressive picture at the annual ultrasonics symposium sponsored by the Institute of Electrical and Electronics Engineers. Leading subjects were nonlinear effects, acoustic-electric energy exchange, transducers, amplifiers, delay lines and biomedical applications.

Nonlinear effects. Robert N. Thurston (Bell Labs), discussing third-order elastic constants and their relation to nonlinear processes, provided an introduction to a number of papers dealing with nonlinear elastic effects in acoustic-wave propagation. Since nonlinear elastic moduli provide the means for interchanging acoustic energy with thermal phonons, one must know their values to determine thermal-acoustic When angular frequency losses. ω times thermal relaxation time τ is greater than unity, the direct exchange can be followed, and Paul G. Klemens (Westinghouse) showed that for shear waves loss is proportional to frequency and to the fourth power of absolute temperature. He presented evidence that for longitudinal waves and lowest temperatures the increase should be proportional to the ninth power of temperature; dependence changes to fourth power at higher temperatures. Experimental results by John de Klerk (Westinghouse) indicate agreement with this result in silicon dioxide, lithium fluoride and calcium fluoride.

When $\omega \tau < 1$, individual modes cannot be followed and the interaction is in the nature of a phonon viscosity. With recently measured third-order moduli for sodium chloride, potassium chloride and yttrium-iron garnet—presented by D. E. Eastman—a formula derived by W. P. Mason found good agreement with measured ultrasonic losses.

Sonic-electric exchange. Electrons can damp acoustic waves by interchange of acoustic energy with electron energy, and dislocations dragged through the crystal are also damped by the "effective" viscosity of these electrons. This effect is the origin of a nonlinear attenuation, which, as discussed by R. W. Shaw and W. P. Mason, is different in normal and superconducting states.

A major effort is generation of higher-frequency acoustic waves. The highest frequencies discussed at the December symposium in Boston were about 70 gigacycles/sec (70×10°) reported by P. E. Tannenwald and J. B. Thaxter, who use surface-wave excitation in quartz. Cadmium-sulfide and zinc-oxide thin-film transducers, discussed in a number of papers, can be

• SOLVING TOMORROW'S PROBLEMS TODAY! • •

Actually, measuring the earth is only one function of a vast tracking network (TRANET) operating throughout this planet in support of the Navy's Geophysical Satellite Program. By this comprehensive global arrangement, scientists are now able to accurately determine not only the size and shape of the earth, and its gravitational configuration, but also the precise location of control points on the earth's surface.

TRANET is an excellent example of an imaginative concept converted into reality . . . the type of scientific problem continuously being posed at the Naval Lab-oratories in California. Projects such as this require the most judicious and talented admixture of machine and men . . . of scientists and engineers who respond productively to the stimulus of the unknown.

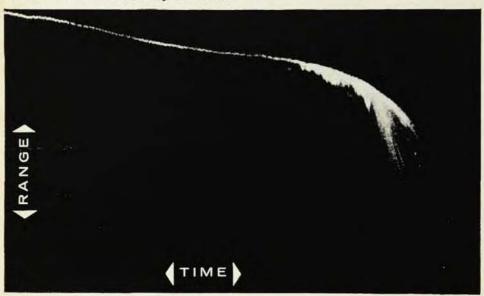
As a qualified scientist or engineer, you could be a working member of this fraternity, pursuing your career in a rewarding, intellectual/creative environment, either on individual assignment or in conjunc-tion with perceptive and distinguished colleagues. Areas of activity range from oceanography to military missions in space, from electronics to nuclear radiation effects, from deep-space exploration to information storage and retrieval, and points between . . . all presenting regions of mystery to be explored, scientific enigmas to be resolved.

FUTURE PROBLEMS

- Acoustic properties of the ocean
- Three-dimensional tracking systems
- Military missions in space
- Building on the ocean floor
- Digital control system techniques
- Miniaturized telemetry development
- Nuclear explosion warning systems
- Computerizing recruit assignments
- Testing the Poseidon Weapon System
- Supersonic water entry shock environment Advanced replenishment-at-sea methods
- Computerizing information storage/retrieval

LABORATORIES

- U.S. NAVAL ORDNANCE TEST STATION (NOTS), CHINA LAKE AND PASADENA
- U.S. NAVAL MISSILE CENTER (NMC) AND PACIFIC MISSILE RANGE (PMR), POINT MUGU
- U.S. NAVAL CIVIL ENGINEERING LABORATORY (NCEL), PORT HUENEME
- U.S. NAVY ELECTRONICS LABORATORY (NEL), SAN DIEGO U.S. NAVAL ORDNANCE LABORATORY (NOLC); CORONA
- U.S. NAVAL RADIOLOGICAL DEFENSE LABORATORY (NRDL), SAN FRANCISCO
- U.S. NAVAL PERSONNEL RESEARCH ACTIVITY (NPRA), SAN DIEGO
- U.S. NAVAL WEAPONS STATION, QUALITY EVALUATION LABORATORY (QEL), CONCORD
- U.S. NAVAL WEAPONS STATION, QUALITY EVALUATION LABORATORY (QEL), SEAL BEACH
- U.S. NAVAL SHIP MISSILE SYSTEMS ENGINEERING STATION (NSMSES), PORT HUENEME U.S. NAVAL FLEET MISSILE SYSTEMS ANALYSIS AND EVALUATION GROUP (FMSAEG), CORONA


To take the first step toward becoming a Laboratories' staff member, send resume to Personnel Coordinator, Dept. C

U.S. NAVAL LABORATORIES IN CALIFORNIA 1030 East Green Street / Pasadena, California 91101 • AN EQUAL OPPORTUNITY EMPLOYER

Systems Research at CAL:

BALLISTIC MISSILE DEFENSE

Since the mid-1950's, Cornell Aeronautical Laboratory, Inc. has maintained a continuing research program in the technologies relevant to ballistic missile defense. Current activities include analytical studies leading to component requirements of various terminal defense concepts as well as planning of field experiments designed to advance such problem areas as interceptor technology. Other efforts concentrate on determining target characteristics useful to AICBM systems and involves definition of potential targets, including their expected motions, both outside the atmosphere and during reentry. Considerable attention is directed toward radar discrimination problems. In an associated area, the Laboratory is participating in a major program to gather accurate radar measurements of reentry vehicles.

Radar Portrait of Athena 4th Stage Breaking up in Reentry

At CAL, systems research encompasses extensive programs for tactical and strategic weapon systems which, in addition to AICBM investigations, include penetration aids for tactical aircraft, new delivery techniques for chemical munitions, command and control techniques for air and sea operations, and advanced research on reconnaissance and surveillance systems.

Experienced personnel are urgently needed for research on systems problems such as these. Positions are available in both Buffalo and Washington.

CORNELL AERONAUTICAL LABORATORY, INC.

of Cornell Universit				

J. T. Rentschler CORNELL AERONAUTI Buffalo, New York 142:	CAL LABORATORY, INC.	ВМД
☐ Please send me a Science," and an a	copy of your factual, illustrated prospec application blank.	tus, "A Community of
☐ I'm not interested in latest "Report on R	n investigating job opportunities now, but I esearch at CAL."	would like to see your
Name		
Street		
City	State	Zip
	An Equal Opportunity Employer	

applied in layers having half-wavelength frequencies in the high gigacycle range. An alternative method for reaching these high frequencies is Brillouin scattering of laser beams. This technique was reviewed by G. B. Benedek. Lasers have been used by Benjamin Tell, T. C. Damen and S. P. S. Porto (Bell Labs) to investigate Raman active modes in zinc oxide and cadmium sulfide. Brillouin scattering is also employed by Martin G. Cohen and Eugene I. Gordon (Bell Labs) to investigate the properties of externally generated sound. Study of thermal phonons in the transmission of heat pulses was described by Arthur H. Nethercot Jr., R. J. von Gutfeld (IBM Watson Labs), J. M. Andrews and M. W. P. Strandberg (MIT).

Conventional transducers. Don Berlincourt (Clevite) described ferro electric-antiferroelectric transition transducers, and several speakers discussed gallium-arsenide and LiNbO₃ piezoelectric transducers. The latter material has very high Q (above 10⁵ at 10⁹ cycles/sec) and has a strong electroöptic effect described by Edward G. Spencer (Bell Labs). An ingenious technique for measuring piezoelectric constants having a high electrical conductivity is the piezoëlectric Hall effect devised by G. Arlt.

Acoustic wave amplifiers discussed included acoustic masers discussed by Norman S. Shiren (IBM Watson Labs) several forms of cadmium sulfide amplifiers with high electronic drift velocity and parametric amplification of magnetoëlastic waves discussed by R. G. Damon. A group of papers dealt with the effect of acoustic gain on electrical impedance and resonant vibrational modes of cadmium-sulfide plates. Andrew R. Hutson (Bell Labs) predicted an active crystal resonator based on these effects, and Donald L. White and Wen Chung Wang (Bell Labs) reported experimental observation of stable single-mode UHF oscillations in cadmium-sulfide plates.

> Warren P. Mason Columbia University

Strong interaction theory

Last year's summer school at the University of Hawaii concentrated on theoretical aspects of strong interactions.