
Reliable, long life microwave sources for research applications

- 50 GHz to 101 GHz
- 50 mW to 300 mW
- Single mode operation
- Excellent frequency stability
- 1 year/500 hour warranty

Raytheon reflex klystron sources are available at any desired frequency from 50 GHz to 101 GHz, trimmable ±1.0 GHz. Average power outputs range from 50 to 300 milliwatts, depending upon frequency. Standard 10 GHz tuning ranges and higher power levels are also available.

You are invited to discuss your millimeter wave requirements with senior engineers of our klystron laboratory. Call (617) 899-8400, Extension 3505. Or write: Raytheon Company, Microwave and Power Tube Division, Dept. 3035, Willow Street, Waltham, Mass. 02154.

LETTERS

Discovery of the electron

I and many other physicists will be grateful to you and Dr Kusch for publishing his illuminating paper entitled "The Electron Dipole Moment" (PHYSICS TODAY, Feb. 1966, page 23). One detail, however, the author

W. B. LEWIS, the author of this letter, is senior vice president of Atomic Energy of Canada Limited, holds a PhD from Cambridge and is a Commander of the Order of the British Empire. He is a member of the scientific advisory committee for the UN and the International Atomic Energy Agency.

should be asked to substantiate or withdraw: his attempt to remove from the 19th century the credit for discovering the electron. An excellent account of the events is given in The Life of Sir J. J. Thomson by Lord Rayleigh (Cambridge University Press, 1942, pages 76 to 123), which every physicist should read. The contributions made by Faraday, Helmholz, Leland, G. J. J. Stoney, Lamour, C. T. R. Wilson, Rutherford, Townsend and others are all presented, but it is difficult to feel there was any error in giving credit to Thomson for the discovery of the electron in 1897.

The following quotation from Helmholtz's Faraday Lectures of 1881 sets the scene: "The most startling result of Faraday's law is perhaps this. If we accept the hypothesis that the elementary substances are composed of atoms, we cannot avoid con-

cluding that electricity also, positive as well as negative, is divided into definite elementary portions, which behave like atoms of electricity. As long as it moves about in the electrolytic liquid, each ion remains united with its electric equivalent or equivalents. At the surface of the electrodes decomposition can take place if there is sufficient electromotive force, and then the ions give off their electric charges and become electrically neutral" (page 90).

C. T. R. Wilson in 1896, from his observations of the "rainlike condensation on x-ray ions," deduced a good value for the ionic charge but did not publish this result (page 101).

G. J. J. Stoney introduced the word "electron" in 1891. His suggestion was adopted by Larmor and the word was taken into use by Lorentz and others. Thomson continued to use his original word "corpuscle" until much later (page 95).

A personal recollection by Lord Rayleigh reads: "In the summer of 1897 J. J. was bubbling over with enthusiasm over his work on cathode rays. The first I heard of it was from himself. . . . He began to unfold to me what he had been doing—telling me that the cathode rays had now 'turned out' to be particles, and particles quite different from atoms' (pages 93 and 94).

Thomson published, in *Philosophical Magazine* (Oct. 1897), the first successful application of quantitative methods to cathode-ray stuff. It was necessary to assume that the charge was carried on a much smaller mass than the hydrogen atom. His methods "brought into quantitative relation the current carried by or with the cathode rays, the heating effect when they impinged on a solid, the electrostatic and magnetic deflections and the driving potential difference" (page 92).

In 1899 evidence for the electron was presented by Thomson to the British Association and the French

HOW THIN THE FILM?

If you're doing research in solid-state physics and are investigating ultrathin films, you'll be interested in Gaertner ellipsometers.

These instruments utilize the methods of Drude, Rothen, Tronstad, and others to permit precise measurement of film thicknesses from a few angstroms to several hundred angstroms. They are also used in the study of birefringence, index of refraction, and other thin-film and surface phenomena.

You can easily convert these ellipsometers to spectrometers. Just add two of our accessories: an entrance slit to the collimator, and a Gauss eyepiece and adapter to the telescope.

There are other accessories you can install yourself without loss of alignment: a Tronstad & Nakamura biplate assembly, a Babinet-Soleil compensator, and a photo-multiplier attachment.

Full information on Gaertner ellipsometers is contained in Bulletin 203-62.

Send for your copy.

GSC-4-215

Please send Bulletin 203-62 describing Gaertner ellipsometers.

Name

Title or Department

Company or Institution

Street

City State

GAERTNER

Zip

GAERTNER SCIENTIFIC CORPORATION 1234A Wrightwood Ave., Chicago, III. 60614 Phone: 312 281-5335 Cable: SCIENTA

HOW MUCH THE CREEP?

Look through one of Gaertner's optical extensometers and you'll get accurate, consistent answers. These fine instruments are calibrated in either metric or English units, and are available with special polarizing eyepieces for high-temperature work. We make a full range of models to meet all standard environmental measuring problems.

Our people are quite proud of their ability to design and build instruments to meet special needs. When you list your requirements, be sure to include the desired precision, diameter of field on object, magnification, total anticipated dimensional change, working distance, orientation of sample, type of fiducial mark, illumination. Also, if two microscopes will be used, state the length of the specimen. Best time to tell us: right now. Want more information? Send for Bulletin 161-64.

GSC-4-217

WHAT'S THE WAVELENGTH?

Gaertner's monochromators permit rapid, direct measurements of wavelengths in the ultraviolet, visible, and infrared regions of the spectrum. In addition, they provide an exceptionally good monochromatic light source.

You'll find the high speed and the 1850 Å to 3μ range of our quartz monochromator ideal for the study of absorption spectra, photosensitive materials, phosphorescence, and energy distribution of light sources. Add a special camera attachment and you've got a high-aperture spectograph.

We have instruments for work in other spectral regions, too, including a high-dispersion spectrometer for the 3950 to 8200 Å range, and an infrared spectrometer for the 0.6 to 12µ range.

You'll get more information on these fine instruments in Bulletin 158-63. Use the coupon to request yours.

GSC-4-218

Please send Bulletin 161-64 describing Gaertner extensometers.

Name

Title or Department

Company or Institution

Street

City

State Zip

GAERTNER'

GAERTNER SCIENTIFIC CORPORATION 1234A Wrightwood Ave., Chicago, Ill. 60614 Phone: 312 281-5335 Cable: SCIENTA

Please send Bulletin 158-63 describing Gaertner monochromators.

Name

Title or Department

Company or Institution

Street

City

State

Zip

GAERTNER SCIENTIFIC CORPORATION 1234A Wrightwood Ave., Chicago, Ill. 60614 Phone: 312 281-5335 Cable: SCIENTA

.01 % GAUSSMETERS

For DC Magnetic Field Measurement and Control

These gaussmeters have a degree of accuracy and resolution far surpassing anything previously available in a general purpose device. They use the same rotating coil principle with reference generator for null balance that is used in our 0.1% gaussmeters. Every effort has been made to extend the accuracy to the fullest extent, and to provide a rugged unit with long operating life.

Wide Range of Measurements with Complete Linearity.

Can be used from zero to maximum field with uniform resolution over the entire range. After balance point is determined, readings are taken from a transformer type divider with five decade dials and meter for interpolation. Dial indications are directly in gausses.

Resolution Comparable to NMR Types.

High resolution (approaching one part per million at full scale) is obtained by a high gain transistor amplifier with narrow band filters for low noise. Balance indications are on a high quality Rawson meter, reading directly in gausses.

Measure Non-Uniform Fields

The rotating coil principle is not limited to uniform fields. You can use it for complete field plots including stray field measurements. It can be used all the way down to zero field or up to very high fields where NMR cannot be used because of non-uniformities.

For Electromagnet Control

A high level DC differential output signal is available for control or recording purposes. This signal goes through zero at whatever value of field you set on the dials and is ideal for power supply control. Stability of a few parts per million can be obtained.

Construction Features

New stronger motor for more reserve power. Temperature control for reference generator. Magnetic shielding of both motor and generator. Rigid mounting with vernier phase angle control. Indicator in handsome walnut cabinet, or can be rack mounted.

Specifications-Transverse field types:

Туре	Tip Diam.	Max. Field Gausses	Meter Resolution (gauss/div.)
923-943	1/8"	111,110	1
920-940	1/4"	111,110	0.2
924-944	1/2"	11,111	.02
922-942	3/4"	1,111.1	.005
026-046	1 1/4//	111.11	0005

An axial field type may be available soon with same range as 920-940. Prices, \$975 probes alone, \$2775 for complete gaussmeters.

Write for new bulletin.

105 Potter Street

Cambridge, Mass.

Association. His evidence included e/m (the ratio of charge to mass) for cathode rays (5 × 10⁷ coulombs per gram), ultraviolet light corpuscles (7.3 × 10⁷ C/g) and incandescent carbon corpuscles (8.6 × 10⁷ C/g), and the charge e for Röntgen-ray ions (2.2 × 10⁻¹⁹ coulombs) and ultraviolet light corpuscles (2.3 × 10⁻¹⁹ C).

Thomson concluded that the first three kinds of particles were identical and had the same e/m. Having determined e for the UV corpuscles he necessarily attributed the same specific charge to the other two. Townsend had shown the same charge on the hydrogen ion in electrolysis (page 113).

Even the variation of e/m with the energy of the corpuscles was known at about that time, and a paper by Sir

Ernest Rutherford and A. G. Grier, communicated to the American Physical Society in April 1902, noted the conclusion from this theory (by then current) that "a portion of the effective mass is electrical in origin." The paper was published in the September 1902 issue of Philosophical Magazine.

Discovery of the electron did not wait for Millikan, who showed that ions changed the charge on oil drops by simple multiples of \pm e and allowed the electric charge in the conducting plates to distribute as in a continuous electric fluid. His measurements were regarded as accurate, but unfortunately they contained greater errors than he suspected.

W. B. Lewis Atomic Energy of Canada Limited Chalk River, Ontario, Canada

Campus democracy

I read with great pleasure the answers given by several prominent scientists to your questions about evaluation of physics teaching ("Should Students Grade Professors?", Physics Today, Jan. 1966, page 64). I couldn't agree more with the general opinion that evaluation of a teacher by his students is not only commendable but indispensable. Therefore I feel that further comment is needed regarding a few of the ideas expressed by one of the interviewed professors.

Professor Arnold Arons is quoted as saying, "I do not believe that a sound educational institution, with high academic standards, can possibly operate as a democracy. To see the chaos and debilitation that result from too much deference to student opinion, one has only to look at some of the Latin American universities that have been unfortunate enough to let student feedback take the form of student voice in university government."

I believe the ultimate proof that a particular university is a sound educational institution and has high academic standards is its ability to operate as a democracy since its prime goal is not to teach mathematics, biology or law, but to educate human beings to live in a democratic society.

When Professor Arons talks about "too much deference to student opinion," it seems to me he implicitly postulates that students don't have a natural right to express their opinions about internal university problems and that it is the faculty's deference and benevolence that give students a voice in such matters. Professor Arons sems to forget that in the ultimate analysis the students are the university-or at least the most important part of it. If their natural right to a voice is not recognized we may very easily fall into the paradox of having students who, as citizens, are considered old and mature enough to go to the polls and vote for the man they want to be President of the United States, but too young and inexperienced to know what may be good or bad for their small community, the university.

I was a student for seven years in Argentinian universities and a teacher for more than two years, and I can say that Professor Arons's remarks about Latin American universities are, unfortunately, true. But they are not the whole truth: the other side of the coin is that when the universities were ruled through a vertical structure, and the voice of the students not only was not heard