PHYSICISTS

Who have the ability to

- . FORM A HYPOTHESIS
- · DEVELOP A MODEL
- TEST THE MODEL AGAINST THE HYPOTHESIS

Who welcome the opportunity to perform a vital defense function,

Who appreciate the idea of a permanent future career,

Who like to see the results of their work in action,

Who approach problems analytically,

Who think constructively,

will find a stimulating environment in the Center for Naval Analyses of The Franklin Institute. They will also find good salaries, liberal fringe benefits, and a chance for professional growth.

CNA is a private scientific organization engaged in operations research, systems analysis, and long-range, broad-based studies for the U.S. Navy and Marine Corps.

For an interview, send your resume to:

James P. Hibarger
CENTER FOR NAVAL ANALYSES
1401 Wilson Boulevard
Arlington, Virginia 22209

INS - Institute of Naval Studies SEG - Systems Evaluation Group OEG - Operations Evaluation Group NAVWAG - Naval Warfare Analysis Group MCOAG - Marine Corps Operations Analysis

An equal opportunity employer

of proposals, and to advise government regarding optical research interests of the college and university community. . . . The opportunity for service by the Optical Society to its membership and to national needs is clear. It is expected that the entire society will join strongly in the program and that an observable enhancement of general optical capability will be the reward."

Sanderson, who is a fellow of the American Physical Society and of OSA and a member of the AIP governing board, retired from the Naval Research Laboratory in December. He was superintendent of the optics division there from 1949 to 1965. During his 30-year association with the laboratory he was largely concerned with optical problems of military interest and also made valuable contributions in radiometry.

Dickinson College awards

Dickinson College has presented its fifteenth Priestley Memorial Award to Charles H. Townes and its Glover Medal to Arnold Honig.

Townes was honored for his "contributions to mankind through physics and his interest in educating young scientists." A pioneer in microwave spectroscopy, he was among the first to demonstrate high-resolution spectra of gases in the microwave region. In 1964 Townes won the Nobel Prize with N. G. Basov and A.M. Prokhorov for the development of masers. Since 1961 he has served as provost of the Massachusetts Institute of Technology and shares, with the MIT president, responsibility for supervising the MIT educational and research programs. Townes has also been a consultant to the President's Science Advisory Committee since 1959 and is chairman of the NASA Science and Technology Advisory Committee for Manned Space Flight. A fellow of both the American Physical Society and the Optical Society of America, he has also been previously honored with the Research Corporation Award, the Comstock Award, the Ballantine Medal and the Rumford Premium.

Arnold Honig was cited for his "contributions to the field of physics through research and teaching." He was born in New York City and re-

ceived his PhD in physics from Columbia University in 1953. Honig has served as a research scientist at the University of California (Berkeley) and the Ecole Normale Supérieure in Paris. A member of the Syracuse University faculty since 1956, he is currently a professor of physics with research interests in microwave spectroscopy and electron-spin resonance.

Langmuir prize

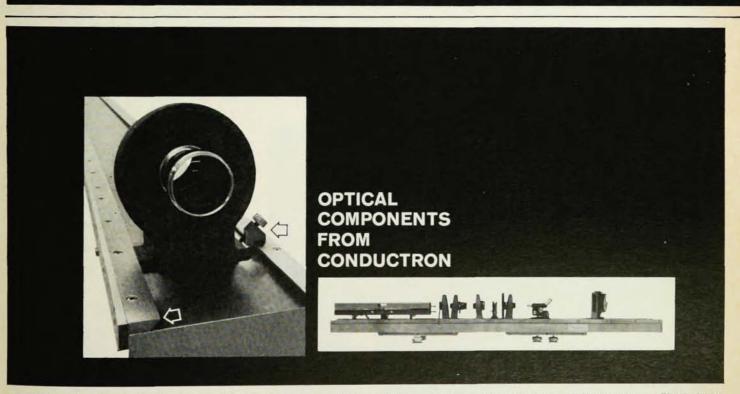
Herbert S. Gutowsky of the University of Illinois has won the 1966 Irving Langmuir Award in Chemical Physics. The \$5000 honor is sponsored by the General Electric Foundation and administered in alternate years by the American Chemical Society and the American Physical Society. Last year's winner, chosen by APS, was John H. Van Vleck of Harvard University. Gutowsky is well known for developing nuclear-magnetic-resonance techniques and applying them to chemistry. His research has resulted in wide use of NMR by chemists to obtain a clearer picture of molecular structure and intermolecular interactions. In addition he has done important work on chemical shifts and electron-coupled spin-spin interactions and has proposed and developed NMR techniques for use in chemical kinetics.

Gutowsky earned his PhD in physical chemistry at Harvard University in 1949 and subsequently joined the Illinois faculty as an instructor in chemistry. Since 1956 he has served as professor of chemistry and head of the division of physical chemistry at Illinois. He is a fellow of the American Physical Society.

APS division officers

The American Physical Society divisions of electron and atomic physics and fluid dynamics have recently announced their executive committee officers for 1966.

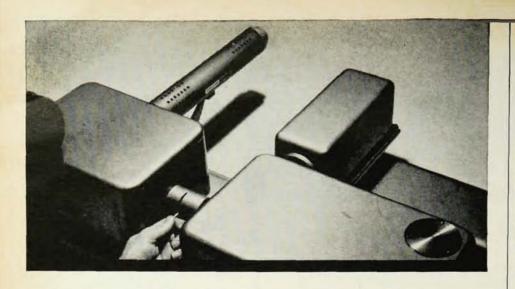
The executive committee of the electron and atomic-physics division includes chairman J. Arol Simpson (National Bureau of Standards), past chairman Wade L. Fite (University of Pittsburgh), vice chairman Edgar Lipworth (Brandeis University), mem-


SCATTERED LIGHT < 10-9 OF LASER LINE INTENSITY AT 5A DISTANCE!

SPEX DOUBLE MONOCHROMATOR

Such an ambitious achievement may be among your current requirements, as it was for the frustrated laser gazers, studying Radiometry and Raman spectra, who inspired our people to eke out this rewarding result. They devised a cunning combination of carefully chosen optical and mechanical components from two of our versatile, precision-built spectrometers.

A new instrument "personality" has thus emerged to prove that two can be almost 100,000 times better than one. Sorry, we have not yet had a chance to prepare any pretty literature but if you phone (201) 549-7144 (N.J.) or (213) 346-2070 (Cal.), we'll see to it that you are connected with one of the few members of the unique minority group knowledgeable in this subject.


Name the optical components you need. Optical benches . . . light sources . . . filters . . . lens mounts . . . microscopes . . . film holders . . . elements for practically any optical arrangement or function. Conductron has them! Typifying Conductron's complete off-the-shelf line is the C-101 precision optical bench that allows true axial positioning of components. Dove-tail guides along one edge permit accurate alignment of lens mounts and other elements. Simple clamps allow removal or interchange without disturbing adjacent components. Bench adapter plates are available to accept any existing component, regardless of source.

CONDUCTRON CORPORATION

Ann Arbor, Michigan

An equal opportunity employer

NEW MODEL LR-1 LASER-SOURCE RAMAN SPECTROMETER SPEEDS STRUCTURAL DETERMINATIONS

For the first time, a high-performance, low-cost Raman Spectrometer is available to the spectroscopist. Compact and easy to use, the new instrument combines a gas laser source with a high-resolution grating monochromator to provide a totally new approach to a well-known analytical concept.

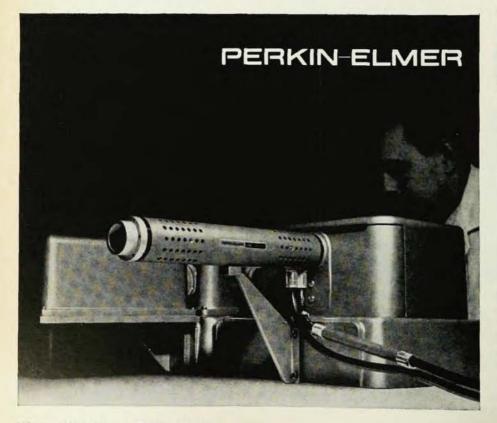
Raman spectra provide important supplementary information to any research laboratory conducting qualitative or quantitative analyses with infrared spec-

troscopy. Simpler than infrared spectra because of the lower intensity of overtone and combination bands, Raman spectra permit better analytical discrimination between substances in a mixture. Since Raman line intensity is directly proportional to concentration, quantitative calculations are easy to perform.

Raman spectra are essential for structural analyses. Only a combination of infrared and Raman spectra will permit determination of geometric and symmetry properties. Raman lines correspond to energy differences in the vibrational and rotational states of the molecule.

The P-E Laser-Excited Raman Spectrometer, Model LR-1, is a complete recording instrument at a comparatively low price. For full information and sample spectra write to Instrument Division, Perkin-Elmer Corporation, Main Ave., Norwalk, Connecticut.

ber until 1965 H. J. Oskam (University of Minnesota), member until 1968 John M. Houston (General Electric Research Laboratory), member until 1969 Allen Lurio (IBM Watson Laboratory), secretary-treasurer Fred G. Allen (Bellcomm), gaseous electronics conference representative L. M. Chanin (University of Minnesota), physical electronics conference representative John F. Waymouth (Sylvania Electric Products), and APS council representative L. Marton (National Bureau of Standards).


The 1966 executive committee of the fluid-dynamics division includes chairman Otto Laporte (University of Michigan), vice chairman Raymond J. Emrich (Lehigh University), secretary-treasurer Richard G. Fowler (University of Oklahoma), Stanley Corrsin (Johns Hopkins University), Russell J. Donnelly (University of Chicago), James A. Fay (MIT), François N. Frenkiel (David Taylor Model Basin), Irvine I. Glass (University of Toronto), and Hans W. Liepmann (California Institute of Technology).

AAPT cites teachers

Seven teachers received distinguishedservice citations from the American Association of Physics Teachers during the joint APS-AAPT meeting in January. Honored for their exceptional contributions to physics teaching were Abram Bader of John Jay High School (NYC), Peter E. Fossum of St. Olaf College, Harald C. Jensen of Lake Forest College, James N. Mount of Garfield High School (Seattle), Benjamin F. Wissler of Middlebury College, Ralph P. Winch of Williams College and Karl S. Woodcock of Bates College.

Australian geophysics group

The Australian Institute of Physics has recently formed a geophysics group which has embarked on an active program of lectures and symposia. The group would be pleased to welcome visiting geophysicists from the United States. Visitors may contact W. D. Parkinson, Bureau of Mineral Resources. Box 378, Canberra City, A.C.T., Australia.

