
FURTHER PROGRESS IN HELICOPTER ROTOR LOAD PREDICTION

Continuing its tradition of research in aeroelastic problems, Cornell Aeronautical Laboratory is developing improved methods for predicting airloads on helicopter rotor blades as a critical step in developing more efficient and longer life blades and in reducing vibration levels in future helicopters.

In a recent program employing a complex, non-periodic representation of the rotor wake, for example, CAL investigated the aerodynamic loadings and response of rotor blades undergoing transients in collective pitch. Predicted results were in good agreement with measured results; one result, obtained for up collective pitch at cruise speed, is depicted below. As a consequence of these initial successes, our analysis now has expanded to include further refinements in the wake modeling and other elastic degrees of freedom believed pertinent for advanced helicopter designs.

Improved prediction methods developed at CAL already have contributed to advances in the state of the art of blade design. The Laboratory's program in this problem area is continuing under Army sponsorship to investigate both single and tandem rotors in steady-state and transient flight. In allied programs, the aerodynamic forces developed by VTOL propellers during transitional flight and the aerodynamic characteristics of wings immersed in the propeller slipstream also are being analyzed.

Working in an environment of modern equipment and techniques, the CAL technical staff continues to make research advances in these and other fields. Typical areas include computer sciences, flight research, avionics, aerospace vehicle research, hypersonics, electromagnetics, applied physics, operations research, transportation and systems research.

If your experience qualifies you to join this community of science, mail the coupon for an interesting briefing on this unusual research team. Positions are available in both Buffalo and Washington.

CORNELL AERONAUTICAL LABORATORY, INC.

of Cornell University

J. T. Rentschler CORNELL AERO Buffalo, New Yor	NAUTICAL LABORATORY,	INC.
	ne a copy of your factual, illustrate	ed prospectus, "A Communit
☐ I'm not interes your latest "Re	ted in investigating job opportunitie port on Research at CAL."	s now, but I would like to se
Name		
Street		
City	State	Zip
	An Equal Opportunity Employ	

original text; integration by parts, stationary phase, saddle point, and steepest descent. However care has been taken to incorporate many developments of the past twenty years, for example, the vander Corput neutralizer, Erdelyi's development of the integration by parts method, and the methods of Chester, Friedman, and Ursell for handling coalescing saddle points. In fact it is encouraging to note that even in this well worked area of classical analysis there is still room for new ideas.

The scope of the work is limited to methods for evaluating definite integrals, and this presumably explains the exclusion of the Darboux method and of phase integral methods of WKBJ type. However, the methods presented are worked out clearly and fully and are abundantly illustrated by nontrivial examples. The book constitutes a useful addition to mathematical literature.

J. Gillis is a member of the Department of Applied Mathematics at the Weizmann Institute of Science in Rehovoth, Israel.

A FUNDAMENTAL EFFECT

MÖSSBAUER EFFECT: PRINCIPLES AND APPLICATIONS. By Gunther K. Wertheim. 116 pp. Academic, New York, 1964. Cloth \$5.50; paper \$2.45.

by R. B. Lindsay

If is sometimes asserted that the day of the simple, fundamental physical effect is over, and that future physical discoveries will be made only with large-scale, expensive apparatus. That the opposite is true has, however, been demonstrated on numerous occasions, and in recent years rather dramatically by the observation of the Mössbauer effect, which has the added interest of having resulted from the university graduate work of the discoverer. Dating from 1959 it has already led to an impressive body of new research in nuclear and solid-state physics.

The objective of the small volume under review, written by a well known member of the staff of the Bell Tele-

The reviewer is dean of the graduate school at Brown University.