in two chapters, as are stability and stability criteria. These pages appear particularly instructive and well presented. The chapter on the filtering properties of linear systems is preceded by a comprehensive discussion of the kinetics of random processes in general. Similarly, the chapter on stability criteria for fixed systems is preceded by a discussion of the stability of linear systems in general.

In the concluding chapter, the authors illustrate how the different techniques of analysis discussed earlier in the book apply to various types of systems, finite and infinite, with continuously distributed parameters. Infinite systems with lumped parameters (cascade networks) are not included.

Some familiarity with the elements of matrix algebra is taken for granted, as is some knowledge of the theory of analytical functions, complex integration and such subjects as the calculus of residues, which is used in evaluating integrals and in connection with the complex Laplace inversion integral and the Nyquist criterion. The positive-real-function approach is not used. Altogether the book does not deal with system theory proper and could equally well be entitled "Linear System Analysis." For a course on this subject, bridging undergraduate and graduate levels, as well as for self study, it can be well recommended. The excellent presentation customary in a McGraw-Hill production, and the relatively low price, make it even more attractive.

Bernhard Gross, director of the Division of Scientific and Technical Information for the International Atomic Energy Agency, is the author of a number of publications on linear systems.

DEFINITE INTEGRALS

ASYMPTOTIC EXPANSIONS. By E. T. Copson. 120 pp. Cambridge University Press, Cambridge, England, 1965. \$6.00.

by J. Gillis

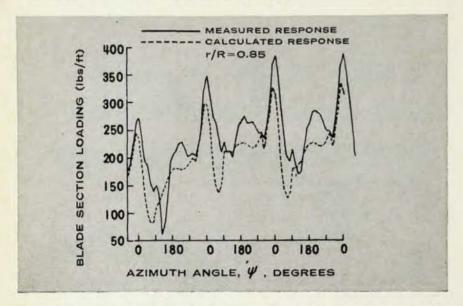
The kernel of this excellent little book was a short monograph written by the author for the Admiralty Computing Service in 1943. The new version covers essentially the same ground as the

interested in Manned Space Flights to the Moon and Beyond

Programmers at Bellcomm, a systems engineering contractor of the National Aeronautics and Space Administration, are applying their skills to simulation languages and techniques, numerical analysis, trajectory analysis, information storage and retrieval, problem-oriented languages, timeshared systems, monitors, assemblers and compilers, display systems and techniques.

Immediate openings are available in applications and system programming to work with engineers and scientists in the following areas:

- ☐ Lunar Reconnaissance Trajectories
- ☐ Apollo Communications System Capability
- ☐ Targeting and Trajectories
- ☐ Surveyor Approach and Descent
- ☐ Space Environment Simulation
- □ Crew Performance Models


If you're interested in a rewarding career in space, you are invited to send your résumé to Mr. N. W. Smusyn, Personnel Director, Bellcomm, Inc., Room 1401-J, 1100 17th St., N.W., Washington, D.C. 20036. Bellcomm is an equal opportunity employer.

FURTHER PROGRESS IN HELICOPTER ROTOR LOAD PREDICTION

Continuing its tradition of research in aeroelastic problems, Cornell Aeronautical Laboratory is developing improved methods for predicting airloads on helicopter rotor blades as a critical step in developing more efficient and longer life blades and in reducing vibration levels in future helicopters.

In a recent program employing a complex, non-periodic representation of the rotor wake, for example, CAL investigated the aerodynamic loadings and response of rotor blades undergoing transients in collective pitch. Predicted results were in good agreement with measured results; one result, obtained for up collective pitch at cruise speed, is depicted below. As a consequence of these initial successes, our analysis now has expanded to include further refinements in the wake modeling and other elastic degrees of freedom believed pertinent for advanced helicopter designs.

Improved prediction methods developed at CAL already have contributed to advances in the state of the art of blade design. The Laboratory's program in this problem area is continuing under Army sponsorship to investigate both single and tandem rotors in steady-state and transient flight. In allied programs, the aerodynamic forces developed by VTOL propellers during transitional flight and the aerodynamic characteristics of wings immersed in the propeller slipstream also are being analyzed.

Working in an environment of modern equipment and techniques, the CAL technical staff continues to make research advances in these and other fields. Typical areas include computer sciences, flight research, avionics, aerospace vehicle research, hypersonics, electromagnetics, applied physics, operations research, transportation and systems research.

If your experience qualifies you to join this community of science, mail the coupon for an interesting briefing on this unusual research team. Positions are available in both Buffalo and Washington.

CORNELL AERONAUTICAL LABORATORY, INC.

of Cornell University

J. T. Rentschler CORNELL AERON Buffalo, New York	NAUTICAL LABORATORY, I	IC.
	e a copy of your factual, illustrated d an application blank.	prospectus, "A Communit
☐ I'm not interest your latest "Rep	ed in investigating job opportunities port on Research at CAL."	now, but I would like to se
Name		
Street		
City	State	Zip
	An Equal Opportunity Employer	

original text; integration by parts, stationary phase, saddle point, and steepest descent. However care has been taken to incorporate many developments of the past twenty years, for example, the vander Corput neutralizer, Erdelyi's development of the integration by parts method, and the methods of Chester, Friedman, and Ursell for handling coalescing saddle points. In fact it is encouraging to note that even in this well worked area of classical analysis there is still room for new ideas.

The scope of the work is limited to methods for evaluating definite integrals, and this presumably explains the exclusion of the Darboux method and of phase integral methods of WKBJ type. However, the methods presented are worked out clearly and fully and are abundantly illustrated by nontrivial examples. The book constitutes a useful addition to mathematical literature.

J. Gillis is a member of the Department of Applied Mathematics at the Weizmann Institute of Science in Rehovoth, Israel.

A FUNDAMENTAL EFFECT

MÖSSBAUER EFFECT: PRINCIPLES AND APPLICATIONS. By Gunther K. Wertheim. 116 pp. Academic, New York, 1964. Cloth \$5.50; paper \$2.45.

by R. B. Lindsay

If is sometimes asserted that the day of the simple, fundamental physical effect is over, and that future physical discoveries will be made only with large-scale, expensive apparatus. That the opposite is true has, however, been demonstrated on numerous occasions, and in recent years rather dramatically by the observation of the Mössbauer effect, which has the added interest of having resulted from the university graduate work of the discoverer. Dating from 1959 it has already led to an impressive body of new research in nuclear and solid-state physics.

The objective of the small volume under review, written by a well known member of the staff of the Bell Tele-

The reviewer is dean of the graduate school at Brown University.