BOOKS

IT STARTED WITH A STRAIGHT HORIZONTAL ROD

SCALES AND WEIGHTS: A HISTORICAL OUTLINE. By Bruno Kisch. 297 pp. Yale University Press, New Haven, 1965. \$15.00.

by W. James King

Just as the longest journey can begin with the shortest step, so the most complicated of the arts can begin with the most naïve of techniques. The validity of this assertion can certainly be recognized in the history of the art of experimentation in the physical sciences. The first phase began in the earliest civilizations with the use of a straight rod, either placed vertically in the ground or suspended at its midpoint on a horizontal axis. The former was the gnomon used to mark what day it was in the year and, as the first form of the sundial, used to tell the hour in the day. The latter was the beam of the balance, used by all primitive civilizations to carry out the exchanges so

necessary in their trade and commerce.

As is inevitable with man, the creator and manipulator of ideas, the users of these simple instruments came to envision the rod in a wider context and in one beyond its immediate application to daily life. Almost from the beginning, an increasingly sophisticated use of the vertical rod led to observational astronomy and applied mathematics. The lists of omina (unusual celestial phenomena) of the second millennium BC, when joined to the mathematical techniques of the Babylonians, became in the first millennium BC predictions of the positions of the moon, Venus and the other planets. The heavens themselves acquired a gridwork of degrees and minutes. In the hands of the Greek astronomers, the gnomon was elaborated into armillary spheres and even into mechanical planetaria. To apply

the instruments of observation more accurately some of the simpler trigonometric functions were developed, and the techniques of spherical trigonometry and of stereographic projection were formulated.

The speculations of philosophers on the reasons for the balance of the horizontal rod were not confined to the purely phenomenological approach, as were those on the vertical one by the ancient astronomers who were primarily concerned with describing the phenomena of the heavens. When the Greek philosophers of nature began to speculate on the reasons for the behavior of the balance and lever, their approach was a physical one, of cause and effect, instead of the kinematical one of the astronomers

It was one of the immediate followers of Aristotle, the author of the pseudo-Aristotelian Mechanica, who recognized the unequal-arm balance as a lever and who sought to explain the physical properties of the lever in terms of the geometrical properties of the circle. According to the author of the Mechanica, the greater mechanical advantage of the shorter arm expressed the greater force necessary to move that end of the lever in a curve with a smaller radius of curvature. Another approach was that of Archimedes, who set forth his explanation in a strictly Euclidean form, and thereby created the classical expression of one of the oldest laws of statics.

In spite of the early theoretical formulation of the properties of the balance, the great utility of the balance in the physical sciences was not recognized in the West until the Renaissance. Even then it was not adequately exploited until the 17th

MEDIEVAL SCALE FOR HEAVY GOODS. Sculpture on a public weighing house in Nuernberg. From SCALES AND WEIGHTS.

W. James King, former director of AIP's Project on the Recent History of Physics in the United States, is now a member of the Department of History at the University of Vermont.

NEW TEXTBOOKS from ACADEMIC PRESS

IN THE FOREFRONT OF SCIENTIFIC PUBLISHING

Mathematical Methods for Physicists

by George B. Arfken

Designed to provide the student with the mathematics he will need for undergraduate and beginning graduate study in the physical sciences. Physical examples are heavily stressed to illustrate the relevance of mathematics in science and engineering. The organization of the material is such that large portions of the text may be assigned as independent readings. By developing the material with sufficient thoroughness, a reasonably complete picture of a given branch of mathematics is presented. Thus, this up-to-date treatment of mathematical physics goes well beyond listing only key equations and presenting the bare minimum for solving immediate problems.

March 1966, about 675 pp., approx. \$12.75

Experiments in Modern Physics

by Adrian C. Melissinos

A working text containing more than enough experiments for a two semester course, for the advanced undergraduate and beginning graduate level laboratory course. Unlike the "cookbook" laboratory manual, however, this book is a text which treats the theory, procedures, and instrumentation of experiments that are the basis of a modern quantum theory. The selection and organization of the material is based on the development of theoretical concepts and physical principles rather than an historical or "laboratory technique" approach. Results obtained with the described equipment are given in detail to permit a realistic comparison of experimental results. Modern commercial equipment is discussed extensively. Because of detailed calculations, discussion of apparatus, and the like, the book will be a valuable reference and handbook.

March 1966, about 450 pp., approx. \$11.75

Introduction to Electronics

by Theodore Korneff

Based on the recommendations of the Second Ann Arbor Conference on Undergraduate Curricula for Scientists, this text is written for physics, or other science majors with a background in general physics and the fundamentals of calculus. It is an introduction to fundamental concepts in electronic circuits and transistors.

An operational viewpoint is stressed, with emphasis on circuit behavior. Linear approximations and graphical solutions for vacuum and solid state diodes and triodes are included with examples to enable the student to do much of the preparation in self-study. Transistors are treated after the presentation of the material on vacuum tubes. This book gives the student the background to design basic circuits for his own use and for more intelligent use of laboratory equipment.

March 1966, about 575 pp., approx. \$11.75

Physics of High Temperature Plasmas: An Introduction

by George Schmidt

This text is designed for a two-semester course for the first or second year graduate students. Developed through classroom use, the book stresses the physics of the subject rather than the mathematical formalism, and attempts to help the student develop a thorough understanding of the relationship of the physical systems to their corresponding models. Emphasis is placed on the applications of high temperature plasmas. A large number of classroom-tested problems conclude each chapter. Classical mechanics and electrodynamic theory are the prerequisites. A number of recent areas of study are treated including non-adiabatic particle dynamics, minimum-B geometries, finite gyro-radius stabilization, and radiation by plasma oscillations. Some of this material has not been published before.

February 1966, about 360 pp., \$12.95

Published Texts

Concepts in Quantum Mechanics

by F. A. Kaempffer,

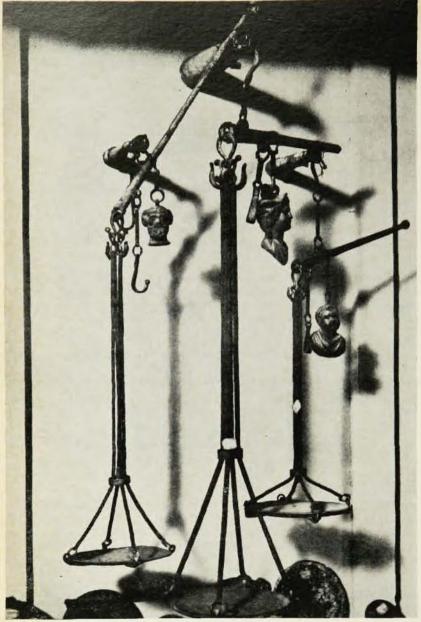
University of British Columbia 1965, 358 pp., \$9.75

Classical Electromagnetic Radiation

by Jerry B. Marion,

University of Maryland 1965, 479 pp., \$10.75

Classical Dynamics of Particles and Systems


by Jerry B. Marion,

University of Maryland 1965, 576 pp., \$11.50

EXAMINATION COPIES AVAILABLE UPON REQUEST

Academic Press NEW YORK AND LONDON . 111 FIFTH AVENUE, NEW YORK, N. Y. 10003 . BERKELEY SQUARE HOUSE, LONDON W.1

MATHEMATICS . PHYSICS . CHEMISTRY . BIOLOGICAL SCIENCES . MEDICAL RESEARCH . SPACE SCIENCES . ENGINEERING . PSYCHOLOGY

STEELYARDS FROM POMPEII. Unequal-arm balances were favorites of the ancient Romans, From SCALES AND WEIGHTS.

and 18th centuries, when investigators like Galileo and Newton, and Black and Lavoisier, showed what might be achieved with it. Unlike the gnomon, which led almost immediately from the calendar to astronomy, the major field of application of the balance was to continue for centuries what it initially was—that of determining the weights of goods and in fixing monetary equivalents.

It is of such applications that the oldest representations were made. The earliest illustration is from the culture of the Hittites, showing what is probably the payment of tribute to a sovereign. In addition to many such transactions, the Egyptians frequently depicted the balance in their wall

paintings and in their manuscript scrolls. Its use was prominent in the Book of the Dead, that guide to the new citizen of the land of the afterlife. In the book the newcomer is instructed what he is to do at each step of the way, including the moment when his heart is being weighed against the feather of truth and before the assembled gods. The crocodile god sits nearby, ready to swallow his soul if it proves unworthy. Unfortunately, as in the case of the coffinlid paintings of the constellations, the drawings of the Egyptian artists are not too trustworthy and the details of the Egyptian balance are uncertain.

For several millennia the balance

was an instrument with arms of equal length. Then, presumably in the commercial practices of the ancient Greeks and Romans, the balance with unequal arms appeared. One form was called the bismar, and the other, the steelyard or Roman balance. The former had a fixed weight on the end of the beam itself and equilibrium was obtained by moving the point of suspension; the latter had a fixed point of suspension and equilibrium was obtained by moving a known weight along the beam. While no material evidence for the existence of the bismar remains from ancient times-the only evidence being an account in the already cited pseudo-Aristotelian Mechanica-there are many relics of Roman steelyards, especially from Pompeii.

The balances of both equal and unequal arms played a vital part in the commerce and embryonic capitalism of the Middle Ages and Renaissance. The efficient Romans had imposed a uniform system of weights and measures throughout their empire but this economic advantage was lost in the chaos of the Dark Ages. Simultaneously with the appearance of medieval civilization in the West, medieval merchants began exchanging commodities and buying goods from areas other than their own, and they turned to the balance as an essential instrument of trade.

Because of the widespread use of the metric system with its decimal divisions, we have forgotten just how difficult it once was to determine monetary and weight equivalents. During the Middle Ages and up until the last century or so, depending on the power and authority of the central government, each community coined its own money. The weight of that money varied not only with the reign of the sovereign, but, if times were bad, within his reign. In addition, coins were apt to be clipped in the many exchanges of commerce.

Moreover each community had its own system of weights, which not only varied through the years, but varied with the kind of merchandise. For example, the unit of gold, silver and jewel weights was the carat. In Bologna it was 0.11 g; in Turin, 10.25 g; in Florence, 14.15 g; in Genoa,

Academic Press

announces the forthcoming publication of five new volumes in

THE ITALIAN PHYSICAL SOCIETY

Proceedings of the International School of Physics "Enrico Fermi"

These unique advanced level texts contain sufficient introductory material to make the books as valuable to the non-specialist as to the research worker in each of the given subjects. Graduate and research seminars may profitably be based on these volumes.

Weak Interactions and High-Energy **Neutrino Physics** edited by T. D. Lee

Strong Interactions edited by L. W. Alvarez

The Optical Properties of Solids edited by J. Tauc

High Energy Astrophysics edited by L. Gratton

Many-Body Description of Nuclear Structure and Reactions edited by C. Bloch

PREVIOUSLY PUBLISHED . . .

Ergodic Theories edited by P. Caldirola 1962, \$7.50

Nuclear Spectrosocpy edited by G. Racah 1962, \$9.00

Physicomathematical Aspects of Biology edited by N. Rashevsky 1962, \$16.00

Topics of Radiofrequency Spectroscopy edited by A. Gozzini 1962, \$10.00

Physics of Solids (Radiation Damage in Solids) edited by D. S. Billington 1962, \$32.00

Cosmic Rays, Solar Particles and Space Research edited by B. Peters 1963, \$16.00

Evidence for Gravitational Theories edited by C. Moller 1963, \$10.00

Liquid Helium edited by G. Careri 1963, \$16.00

Semiconductors edited by R. A. Smith 1963, \$20.00 **Nuclear Physics** edited by V. F. Weisskopf 1963, \$7.50

Space Exploration and the Solar System edited by B. Rossi 1964, \$13.00

Advanced Plasma Theory edited by M. N. Rosenbluth 1964, \$9.75

Selected Topics on Elementary Particle Physics edited by M. Conversi 1963, \$10.00

Dispersion and Absorption of Sound by Molecular Processes edited by D. Sette 1963, \$17.00

Star Evolution edited by L. Gratton 1964, \$18.50

Dispersion Relations and their Connection with Causality

edited by E. P. Wigner 1964, \$12.00

Radiation Dosimetry edited by F. W. Spiers and G. W. Reed 1964, \$14.00

Quantum Electronics and Coherent Light edited by C. H. Townes and P. A. Miles 1964, \$16.00

Does this look like an answer to global probler

to global problems of ignorance, disease and physical deprivation?

Not yet. But we're getting closer.

Behind this movement is a simple statistic with startling implications for all of us—If you count all the scientists and engineers since the beginning of recorded history, ninety percent are alive today!

We are now in the midst of the result — an incredible explosion of information from every corner of the globe. And somewhere within this explosion will be the ultimate answers to mankind's oldest, and newest problems.

The challenges are many. First, to understand the nature of this giant intellectual force. Then, to find the best way to collect it, classify it, store it... and distribute it appropriately

The Xerox 914 Copier revolutionized the office copying industry when it was introduced in 1959... and really started us on our way.

Less than 3 years later, the 813 further extended low-cost, quality office copying. One-seventh the volume of the 914, it does just about everything the 914 does except copy solid, 3-dimensional objects.

Another revolution. An electromechanical-chemical-optical device called the 2400 because it produces 2,400 copies per hour directly from an original document. No stencil or "master" of any kind. You press a button.

and instantly to the people who need it.

In this light, you might consider today's Xerox products early and primitive steps along a difficult but fascinating path. You'd be right. Yet, has anyone taken these steps before us?

Your degree and background may be more appropriate to our advanced work than you imagined. We're as interested in talking with communication systems specialists as electromechanical designers, organic chemists as much as program analysts. This list is as broad as it is long. Maybe broader. You'll find several specific (and urgent) openings outlined at the right. If they suggest a possible community of interest, send us your resume. An equal opportunity employer (M&F).

TOP PHOTO: LDX (Long Distance Xerography) scans, transmits and reproduces images over distances limited only by the transmission medium. Something like it may print the morning paper at your breakfast table some day, or help you manage a global business.

XEROX, 914, 813, 2400 AND LDX ARE TRADEMARKS OF XEROX CORPORATION

Does this look like an answer to your career problems?

OPTICAL ENGINEERS. To engage in the study, assessment and development of advanced imaging systems, modulation techniques, optical scanners, image recording, information storage and retrieval and display equipment. Previous experience in the design and engineering of optical systems is required. BS Optics, Physics, or related science.

PHOTOGRAPHIC ENGINEER. To develop, test, and evaluate exploratory xerographic and photographic equipment. Previous experience should include a minimum of 5 years' development experience in the fields of light, precision machinery, and instruments. Should have a basic knowledge of electricity, light, and optics. BSME, EE, or engineering physics.

PHYSICIST. For radiometric studies, sensitometric studies and systems spectal output and/ or response characteristics evaluations.

EXPLORATORY PHYSICIST. Will determine the applicability of physical and optical phenomena to graphic imaging and display device requirements for government contracts and development projects.

These positions are in Rochester, New York. Send resume, including salary history to Mr. Phillip D. Smith, Xerox Corporation, Dept. ZVB-114, P.O. Box 1540, Rochester, N. Y. 14603.

XEROX

An Equal Opportunity Employer (M & F)

13.22 g; in Milan, 9.8 g; in Venice, 0.20 g. Or consider the market weight called the stone. In Amsterdam it was 3.95 kg; in Berlin the heavy stein was 10.28 kg and the light stein was 5.14 kg; in Sweden it was 13.56 kg; in Vienna it was 11.20 kg. In England the stone for fish or meat was 3.63 kg; the stone for glass was 2.27 kg; the stone for wool was 6.33 kg. There was the pharmaceutical pound of 12 ounces and the market pound of 16 ounces, and so on, for all the various units of weight of different commodities and places.

Vital to the exchange of goods and money were the master weighers and the money changers. Attempts to fix exact weights appear in most of the great lawgiving documents of history. For example, the Bible repeatedly admonished that the merchant should not keep a heavier set of weights for buying and a lighter set for selling; the Magna Carta declared that weights and measures should be uniform and in accordance with the law, as had Charlemagne so decreed. To establish such uniformity standard weights were kept, in ancient times, in the temple, and in medieval times and later, in the town hall. The master weigher of the Middle Ages several times a year would compare the merchant's weights with the standard city weight. Makers of balances and weights also were members of the organic medieval society: they had a guild of their own, with, at least in Paris, St. Michael for their patron.

The money changer, who was just as much money weigher, set up his booth in the marketplace, with his own kind of scales for the rapid evaluation of true weight. In some communities it was forbidden for anyone else to have such scales, with heavy penalties imposed (up to the loss of a hand) for violators of the law. A sharp-eyed changer, besides detecting clipped money, could also detect coins that might be too heavy, which excess would go into his own coffers. Money changers were apt to become embryonic capitalists; money would be deposited with them for temporary keeping, and one account of the de Medici family points to such a beginning of their wealth.

During the 18th century the scien-

tific revolution was bearing its first fruits. New uses for balances were finally discovered by experimenters, and instead of being made by guild members, balances were increasingly made by instrument makers. Physicists more and more were turning their attention to improving the efficiency of the instrument. By that time, the descendants of the gnomon were in turn being replaced by the more efficient telescope. Then in the 19th and early 20th century the balance became the fundamental instrument of the laboratory, and it was exploited as never before. Today it is only one of the many instruments in the arsenal of the experimentalist.

Regrettably, only patches of the rich history of scales and weights appear in the book under review. The subtitle of the work-A Historical Outline-is misleading. The author makes few attempts to undertake the historian's task-that of resolving and evaluating conflicting opinions so as to give to the reader a neatly sewn fabric in which the relevant historical facts are matched and integrated into a pattern of causes and effects. Instead, the author has presented only fragments of the whole story, and mostly for the merchant's balance from the period before the 19th century. Although the reference apparatus is excellent-the book is well and profusely illustrated, and there is a 14page bibliography-the text of the book is incompletely organized and, at times, vaguely written. However, the book can provide entertainment and pleasure for the browsing reader with an antiquarian interest who wishes to learn something of the art of weighing in past times.

CRYSTALS FOR STUDENTS

CRYSTALS PERFECT AND IMPERFECT. By Allan Bennett, et al. 237 pp. Walker, New York, 1965. \$5.95.

by H. M. Otte

"Our understanding of crystals will not be complete until we can predict the properties of a crystalline system from first principles, and until we have the technical ability to produce a theoretically possible crystal struc-