

GARDNER research dewars are designed to meet all the requirements of TODAY'S cryogenic applications. GARDNER dewars are at work throughout the scientific community aiding the researcher in his studies on superconductivity, masers, lasers, etc.

The basic dewar modules are easily equipped with your specific modifications and are delivered to you on schedules usually reserved for "offthe-shelf" hardware.

If you are presently involved in, or planning a program requiring cryogenic apparatus...why not challenge GARDNER with your requirements?

Write for our new 32 page catalog containing detailed information on GARDNER'S complete line of dewars and other cryogenic equipment.

Gardner Cryogenics CORPORATION

P.O. BOX 2027, BETHLEHEM, PENNSYLVANIA (18001) 140 WILLIAMS STREET, HIGHTSTOWN, N.J. (08520) 6505 SAN FERNANDO ROAD, GLENDALE, CAL. (91201)

LETTERS

(Continued)

was issued in that year under the title "A waveguide theory of piezoelectric resonance."1

This work was done with the main purpose of damping the untrapped modes so that the spectrum of a frequency-modulated quartz-crystal oscillator (Marconi "FMQ" system) should be clean enough to satisfy the British Broadcasting Corp. for use in their high-fidelity Wrotham transmitter (the first of the VHF chain).

Since then an article was published in Wireless World2 on this system in 1951 and an IEE paper3 was read in 1957, the latter describing the basic energy-trapping theory first given in the above report. This particular application of the theory (which we called the "waveguide theory") was very successful indeed, and we were unable to detect any unwanted modes at all. Although it might appear from the simple concept of trapping that trapping alone is adequate to suppress unwanted modes, it is only so for a constant frequency. When the oscillator is directly modulated, the sidebands spread into the untrapped spectrum, and although it can be arranged that the energy is small (by choosing the frequency of cutoff), resonances can be excited in the outer part of the plate and are noticeable constant-frequency modulation tests. No hi-fi engineer could permit this! Therefore we absorb these resonances, and from some of the energy-trapping quartz filter characteristics we have seen it would be a good thing if the American workers incorporated similar absorbers and gave acknowledgement to the Marconi Co.!

Perhaps we should say that we have used the waveguide approach to the design of frequency substandard oscillators (for example, in the TME 2 frequency-measuring equipment and in the Italian broadcasting system). In such cases we do not add absorbers.

References

1. W. S. Mortley, "A waveguide theory of piezoelectric resonance," Marconi in-ternal report RD, 756 (1946).

- 2. W. S. Mortley, "F.M.Q.," Wireless
- World 57, 399 (1951). 3. W. S. Mortley, "Frequency modulated quartz oscillators for broadcasting equipment," Proc. IEE 104B, 15 (1957).

W. S. Mortley

The Marconi Company Limited

Adapting journal practices

My qualifications for commenting on the discussion in your June issue of the proposed Physics Information Exchange [S. Pasternack, M. Moravcsik, A Debate on Preprint Exchange] are that I work primarily as a librarian but also have responsibility for production of publications in a research establishment.

Before making some points "con" the exchange I should like to point out that Moravcsik's arguments in his rebuttal are based on a false analogy. The exchange is not a scientific experiment but an administrative proposal: the effects and results of adopting such proposals need not be pure guesswork; they can be assessed with fair accuracy in the light of previous experience.

If the two advantages of PIE are speed of publication and ability to obtain comments, appraisals and criticisms of papers, I would suggest that two new periodicals be published: Physics Papers: Unreviewed (journal A) and Physics Papers: Comments (journal B).


Both of these journals could use the principle proposed for production of PIE preprints, photoreproduction of the original. The only additions required would be a cover and numbers stamped on the pages before copying. Both could be issued weekly.

The advantages of this system over PIE would be: (a) wider availability (any person or institution could subscribe); (b) avoidance of the introduction of a new category of literature (also, proper citation could be made); (c) the journals may be economically viable if not profitable.

The ideas for these journals are not original; indeed journal B was inspired by a letter in the same issue of PHYSICS TODAY (Mendel Sachs, page

I have three additional suggestions about production of these journals:

See More! Do More!

New hp 180A OSCILLOSCOPE GIVES STEP-AHEAD ELECTRICAL PERFORMANCE!

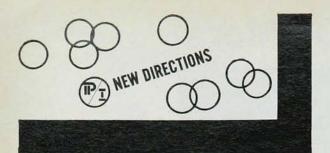
• 50 MHz at 5 mv/cm! • Triggering beyond 90 MHz!
• Sweeps to 5 nsec/cm! • 8 x 10 cm CRT!
• All-solid-state!

Designed and engineered from the user's viewpoint in, the new high-frequency, 30pound hp Model 180A Oscilloscope is packed with new ideas and innovations to give you step-ahead electrical performance-and bigpicture CRT, plug-in versatility, minimum weight and rugged design. You get more performance, more usability than you get from any other scope on the market!

The dual channel 50 MHz at 5 mv/cm vertical amplifier has low-drift FET input stages for accurate DC measurement...plus quick, 15-second warm-up. Vertical attenuation,

which sets vertical deflection factor, is ahead of the amplifier. This prevents trace jump as you change ranges; bandwidth is maintained on all ranges even when verniers are used.

Time base plug-ins offer new easy-to-use delayed sweep for examining complex waveforms in detail. Tunnel diode triggering circuits lock-in waveforms to beyond 90 MHz. Exclusive hp mixed sweep feature combines display of first portion of trace at normal sweep speeds, and simultaneously expands trailing portion of trace at faster delayed sweep speed to allow magnified examination.


New horizontal amplifier has wide bandwidth with X10 magnification to provide linear 5 nsec/cm sweeps, giving you greater resolution of high frequency signals and fast pulses.

Mainframe and plug-ins of the hp 180A are all-solidstate. Mainframe is the first with power supplies specifically designed for solid-state circuitry—gives you full performance benefits from solid-state devices in all present and future plug-ins.

Accurate measurements are easier to read and view on the new hp 180A scope, because a new design breakthrough offers a compact 17-inch long, highfrequency 8 x 10 cm CRT with extra-large picture area - 30% to 100% larger than any other high-frequency scope! With the black internal graticule, calibrated in centimeters. the bright trace and a 12 ky accelerating potential, you get sharp, crisp traces for accurate resolution of waveform details-even at 5 nsec/ cm sweeps.

For a demonstration of the step-ahead electrical performance of the new hp 180A Oscilloscope, and full specifications, call your nearest hp field representative. Or, write to Hewlett-Packard, Palo Alto, California 94304, Tel. (415) 326-7000; Europe, 54 Route des Acacias, Geneva. Price: hp Model 180A Oscilloscope, \$825.00; hp Model 180AR (rack) Oscilloscope, \$900.00; hp Model 1801A Dual Channel Vertical Amplifier, \$650.00; hp Model 1820A Time Base, \$475.00; hp Model 1821A Time Base and Delay Generator, \$800.00.

40,000 AMPERES/4 MeV...

PHYSICS INTERNATIONAL GENERATES
THE WORLD'S MOST INTENSE ELECTRON BEAM

Physics International's B² Pulsed Radiation Facility is now producing the world's most intense electron beam (40,000 amps/4 MeV) as a routine operation. With this beam PI can precisely deposit upward of 5,000 joules of energy in 30 nanoseconds as well as diagnose its effects accurately. This high electron energy (4 MeV

This high electron energy (4 MeV max.) permits deeper penetration and energy deposition than is possible at lower energy levels. The energy deposited (both calculated and experimental) as a function of depth in aluminum is shown in the curve below.

This intense current (40,000 amps) allows uniform deposition at high flux levels over a large spot size. Thus wave propagation studies can be carried out in one-dimensional geometry. For an energy density of 70 cal/cm², spot size can be 3 cm. in diameter. Intensity can be increased to more than 1000 cal/cm² for spot of 4 mm diameter, much greater than has previously been publicized.*

Experimental and analytical studies of the thermo-mechanical response of materials are being conducted at PI. This is a complete, coordinated experimentalanalytical service for electron beam deposition studies.

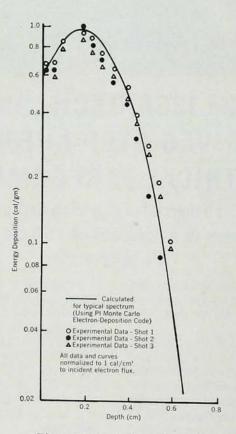
Experimental studies, using advanced diagnostic equipment and techniques, have included beam monitoring, damage analysis and energy deposition measurements. Programs are now underway that will include measurements of the dynamic pressure and velocity response.

In the analytical program, energy deposition calculations (see curve) are made and used as a time-dependent input in PI's one- and two-dimensional, elastic-plastic hydrodynamic codes, to provide detailed information on the dynamic response of

the irradiated material.

The electron pulser used in these experiments is equivalent to the PI Pulserad Model 730. Other models are available, ranging in output from 2 MeV and 20,000 amperes to 10 MeV and 500,000 amperes. The pulsers, in addition to operating in the electron mode, are quickly converted to operations in the prompt gamma mode. This is accomplished by impinging the electrons onto a high-Z target to produce bremsstrahlung X-rays.

*See "Physics Today," Vol. 19, No. 8, p. 107 (1966)


We would be happy to discuss our capabilities in these fields with you. Phone or write us today.

PHYSICS INTERNATIONAL COMPANY

2700 Merced Street, San Leandro, California Telephone: (415) 357-4610

1.75 cm

A spalled 0.008" thick tantalum, easily generated by a single pulse.

Theoretical and Experimental Depth-dose profile in aluminum.

LETTERS

(Continued)

(1) A quarterly cumulating list of the papers in journal A showing the papers in journal B that refer to each. A similar list should also be issued of items in journal B showing later comments. (These indexes need not, indeed do not, replace standard author and subject indexes.)

(2) The individual papers should be removable (perforated in the margin) without destroying the journal. Personal users will find this convenient. Librarians with uncoöperative readers will probably find it a menace, but it does give them the opportunity, after a period, of removing papers no longer of current interest and keeping only those that seem likely to be of fairly permanent value so reducing the bulk.

(3) Papers in journal A that prove to have some permanent value might eventually be made available together with any commenting items in journal B in microform or as a third journal.

Some of your readers may think that by proposing journals as an alternative to PIE I have missed the point. Please be assured that this is not so. I appreciate the disadvantages of the present preprint and publication methods and that PIE offers one solution to them. What I wish to suggest is that adaptations of existing methods may be preferable to introduction of a completely new system.

D. Alasdair Kemp Royal Observatory, Edinburgh

A CORRECTION: On page 103 of the November issue of Physics Today an editorial change altered the meaning of one of the sentences of Edwin McMillan's obituary of Vladimir Veksler. McMillan's independent discovery of the principle of phase stability did not take place at Berkeley as stated but at the Los Alamos Scientific Laboratory, where he was on leave from the University of California. The work was submitted for publication on his return to Berkeley after the end of the war.