NEWS OF THE INSTITUTE

H. William Koch of the National Bureau of Standards chosen as the new AIP director

On 7 October the institute's governing board unanimously elected H. William Koch of the National Bureau of Standards the new director of the American Institute of Physics. Koch will take office on 1 Jan. 1967.

For the past four years Koch has headed the Radiation Physics Division. This division engaged in research and calibration services with high-energy x rays, electrons and neutrons. Since coming to NBS in 1949 he has supervised the installation and testing of the bureau's 50-MeV betatron, the 180-MeV synchrotron and, most recently, the 100-MeV electron linac at the bureau's new site in Gaithersburg, Md. For his scientific administration as well as his work in scintillation spectrometry, high-energy bremsstrahlung spectra and attenuation of high-energy radiation, he was awarded a Commerce Department gold medal in 1962.

Koch was born in New York City in 1920 and received his BS from Queens College in 1941. He took his MS in 1942 and his PhD in physics in 1944, both from the University of Illinois. For the next five years and until he joined NBS, he held an assistant professorship of physics at Illinois where he worked with Donald W. Kerst. Together with Kerst, Koch assisted in developing 80-300 MeV betatrons and made determinations of thresholds in uranium, thorium and other elements. During this period, he took a six-month leave from Illinois to serve as a physicist at the Clinton laboratories. Koch is a fellow of the American Physical Society and a member of Sigma Xi.

To acquaint physicists with the new director of AIP, PHYSICS TODAY recently interviewed Koch about his decision to come to the institute and about the problems and opportunities in physics. He told us that physicists have a broader role to play beyond the laboratory, that the public and Congress should know more of what the physicist does and that the physics

community, despite increasing fragmentation, needs more than ever to employ the services and support vigorously the AIP.

From the new radiation laboratory at Gaithersburg to AIP is a major step in a scientist's career and we asked Koch:

 What were some of the reasons involved in your decision to come to AIP?

"The new radiation laboratory at Gaithersburg has been the result of eight years of very intensive effort by about 100 persons. This planning in-

косн

volved design of accelerators and programs as well as the actual moving of facilities and people to a new building. This effort has now been completed and is prospering extremely well. I personally derived a great deal of satisfaction from managing the undertaking in radiation physics. Now the laboratory will enter a new phase of operation. I was at the crossroads in my own professional life, and I decided not to proceed with this new phase at NBS but to seek a different challenge with AIP."

 What do you see as some of the principal problems before the physics community?

"Rather than stating them as problems, I would prefer to call them op-

portunities. One such opportunity is for scientists, and physicists in particular, to interpret and explain the importance of science to our society. Science has a job to do in selling itself to the general public. Otherwise the public and its representatives in Congress are going to grow frustrated in their expectations of practical results from science. Another opportunity has to do with the communication of ideas among scientists. We are living in a time when the production and publication of information is growing rapidly. To cite one specific example familiar to all physicists, The Physical Review is expanding at the rate of between 10-20% per year. The information contained in The Physical Review as well as other physics journals will have to be made easily accessible to all scientists. I understand that the AIP is making very substantial progress in the areas of indexing and abstracting with the help of physics advisory groups and has initiated studies of computerized publication systems. I hope shortly to learn more details of this progress and the future opportunities for the physics community in our development of usable solutions to the information problem.

"A third opportunity is in the area of education, particularly at the high-school level. Enormous opportunities exist for the encouragement and professional development of high-school teachers by such mechanisms as regional counseling and summer employment in research laboratories."

• Do you believe that the scientist in the past has been too close to his laboratory, too parochial in his outlook?

"Yes, it's obvious that scientists have to play more of a role in the overall life of our society. However, the exact procedure by which they can broaden their activities is not obvious. I think the American Institute of Physics and other professional organizations must try to develop philosophies and offer

Bring your magnetic material to Booths 49 & 50, Magnetism and Magnetic Materials Exhibit, Washington

we'll plot its full magnetic characteristics in five minutes at no charge

To show how accurately, easily and efficiently the Model MH-1 Hysteresisgraph Recording Permeameter works, Magnemetrics will have one in operation at the Magnetism and Magnetic Materials Exhibit, November 15–18. We'll be happy to run off data curves for you so you can see for yourself how this precision instrument takes the drudgery out of magnetic measurement and data reduction.

At our booths you'll see E.S.I. Instruments as well as the O.S. Walker equipment. These two companies have joined forces to offer a complete range of magnetic products and services.

If you can't make the show, write for Bulletin MH-1. You should have the facts on the Hysteresisgraph in your files.

ESI) EASTERN SCIENTIFIC INSTRUMENTS CORP.

encouragement so that physicists can participate in areas beyond their own immediate research and teaching."

• In what way can the physics community effectively assist the federal government?

"The federal government is the principal supporter of science, and Congress is faced with satisfying many demands that compete for limited government funds. The only way physics will be given greater opportunities is for Congress to understand the implications of physics. It is clear that Congress has been mystified by science and has been groping to understand it. What physics has to do is to present its case to Congress in the best way that is possible."

• What is your opinion on the geographic distribution of federal funds?

"Though I would not advocate decreasing support for our major educational institutions, I believe the smaller colleges will have to get an increasing proportion of the budgets for education and research. Congress has recognized that a wider distribution is certainly called for. I think that perhaps by doing it on a state by state basis is not an unreasonable way of accomplishing the objective. If you do not try to monitor the distribution of federal funds, there is a natural tendency for the big schools to get bigger, to the detriment of the small schools as well as the entire process of education."

• What accommodations do you think should be made in view of the growing fragmentation of physics?

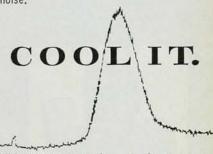
"The fragmentation of physics to which you refer is the natural consequence of increased specialization in all the sciences. I believe a partial counteraction to this fragmentation, this specialization of physics, is a vigorous federation of the physics community as is available in the institute. This federation has helped to identify and satisfy the common needs. The federation has provided the mechanism whereby physicists have spoken with a strong and understandable voice. Physicists need to make use of this mechanism in the future in order to develop deliberate and common positions on all of the important issues of the physics community."

AIP and IEEE publishing project

In its first joint publishing venture, the American Institute of Physics has collaborated with the Institute of Electrical and Electronics Engineers in preparing the October issues of Applied Optics and Proc. IEEE. Both journals contained identical papers on the theme of optical electronics, with some 120 pages devoted to invited survey articles on laser applications. IEEE was responsible for all editorial work and type composition, and each journal printed and distributed its own copies and carried its own advertising. The two feature editors for the project were Donald R. Herriott of Applied Optics and Ivan P. Kaminow of Proc. IEEE.

Faster delivery for CPP

Current Papers in Physics will be distributed under a new delivery system starting with the 10 Oct. issue. In the past copies for distribution by AIP were shipped to the United States by surface mail. In the future air freight will be used for shipments from Britain to New York, and AIP will then mail the copies by first class mail. AIP will pay the additional cost for the new method of delivery. In addition CPP has changed its format to get about 10% more items on a page and with these additional items covers virtually all the papers that go into Physics Abstracts.


Foreign science information

AIP and the American Chemical Society have jointly issued Information on International Scientific Organizations, Services, and Programs. The 140page handbook provides data on US agencies with international scientific interests, foreign and US science attachés, international science organizations and universities, academies and societies in various countries. In addition, an appendix includes membership and committee information concerning ICSU, IUPAC and IUPAP as well as a list of publications of interest to chemists, chemical engineers and physicists who are going abroad. Copies of the booklet can be obtained from AIP Public Relations.

THERMAL NOISE?

Even with phase sensitive detection, signal is barely distinguishable from background noise.

With the photocathode at dry ice temperature, the S/N improvement factor is 10^2 . (S-1 Cathode.)

EOA PM-101 COOLABLE PHOTOMULTIPLIER ASSEMBLY

When noise filtering and bandwidth restriction fail, or for the detection of fast-rise-time signals involving large bandwidths... choose the low cost EOA PM-101 (1.5" and 2" nom. diam. tubes) or PM-102 (2" nom. diam, tubes) coolable photomultiplier assemblies.

FEATURES: Dry ice or LN gas cooling • S/N improvement over room temperaure to 100:1 (S-1 cathode) • Frost and fog-free window • Uses many popular PM tubes • Double electrostatic and electromagnetic shielding • Integral anode load selector switch • Threaded front end for quick, vacuum-tight connection to other instruments • Easily adaptable for spectrometers, optical benches, modular accessories.

Write or phone for complete data and pricing information to

ELECTRO OPTICS ASSOCIATES

981 Commercial Palo Alto, Calif. (415) 327-6200 Gas Lasers • Calibrated Sources • Filters