encouragement so that physicists can participate in areas beyond their own immediate research and teaching."

• In what way can the physics community effectively assist the federal government?

"The federal government is the principal supporter of science, and Congress is faced with satisfying many demands that compete for limited government funds. The only way physics will be given greater opportunities is for Congress to understand the implications of physics. It is clear that Congress has been mystified by science and has been groping to understand it. What physics has to do is to present its case to Congress in the best way that is possible."

 What is your opinion on the geographic distribution of federal funds?

"Though I would not advocate decreasing support for our major educational institutions, I believe the smaller colleges will have to get an increasing proportion of the budgets for education and research. Congress has recognized that a wider distribution is certainly called for. I think that perhaps by doing it on a state by state basis is not an unreasonable way of accomplishing the objective. If you do not try to monitor the distribution of federal funds, there is a natural tendency for the big schools to get bigger, to the detriment of the small schools as well as the entire process of education."

• What accommodations do you think should be made in view of the growing fragmentation of physics?

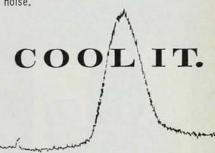
"The fragmentation of physics to which you refer is the natural consequence of increased specialization in all the sciences. I believe a partial counteraction to this fragmentation, this specialization of physics, is a vigorous federation of the physics community as is available in the institute. This federation has helped to identify and satisfy the common needs. The federation has provided the mechanism whereby physicists have spoken with a strong and understandable voice. Physicists need to make use of this mechanism in the future in order to develop deliberate and common positions on all of the important issues of the physics community."

AIP and IEEE publishing project

In its first joint publishing venture, the American Institute of Physics has collaborated with the Institute of Electrical and Electronics Engineers in preparing the October issues of Applied Optics and Proc. IEEE. Both journals contained identical papers on the theme of optical electronics, with some 120 pages devoted to invited survey articles on laser applications. IEEE was responsible for all editorial work and type composition, and each journal printed and distributed its own copies and carried its own advertising. The two feature editors for the project were Donald R. Herriott of Applied Optics and Ivan P. Kaminow of Proc. IEEE.

Faster delivery for CPP

Current Papers in Physics will be distributed under a new delivery system starting with the 10 Oct. issue. In the past copies for distribution by AIP were shipped to the United States by surface mail. In the future air freight will be used for shipments from Britain to New York, and AIP will then mail the copies by first class mail. AIP will pay the additional cost for the new method of delivery. In addition CPP has changed its format to get about 10% more items on a page and with these additional items covers virtually all the papers that go into Physics Abstracts.


Foreign science information

AIP and the American Chemical Society have jointly issued Information on International Scientific Organizations, Services, and Programs. The 140page handbook provides data on US agencies with international scientific interests, foreign and US science attachés, international science organizations and universities, academies and societies in various countries. In addition, an appendix includes membership and committee information concerning ICSU, IUPAC and IUPAP as well as a list of publications of interest to chemists, chemical engineers and physicists who are going abroad. Copies of the booklet can be obtained from AIP Public Relations.

THERMAL NOISE?

Even with phase sensitive detection, signal is barely distinguishable from background noise.

With the photocathode at dry ice temperature, the S/N improvement factor is 10^2 . (S-1 Cathode.)

EOA PM-101 COOLABLE PHOTOMULTIPLIER ASSEMBLY

When noise filtering and bandwidth restriction fail, or for the detection of fast-rise-time signals involving large bandwidths... choose the low cost EOA PM-101 (1.5" and 2" nom. diam. tubes) or PM-102 (2" nom. diam. tubes) coolable photomultiplier assemblies.

FEATURES: Dry ice or LN gas cooling • S/N improvement over room temperaure to 100:1 (S-1 cathode) • Frost and fog-free window • Uses many popular PM tubes • Double electrostatic and electromagnetic shielding • Integral anode load selector switch • Threaded front end for quick, vacuum-tight connection to other instruments • Easily adaptable for spectrometers, optical benches, modular accessories.

Write or phone for complete data and pricing information to

ELECTRO OPTICS ASSOCIATES

981 Commercial Palo Alto, Calif. (415) 327-6200 Gas Lasers • Calibrated Sources • Filters