laration of friendship and good will from the American people to the Egyptian people."

The conference was attended by 173 delegates, including 108 from the UAR, 28 from the USA, and 37 from 15 other countries. Each of the sessions had as chairman a visitor from abroad, and as a cochairman a scientist from the United Arab Republic. The general topic of the conference was "Interaction of Radiation with Solids." There was considerable emphasis on radiation damage or effects. Three of the eight sessions were concerned with this topic, the others dealing with magnetic resonance, conductivity, metals, spectroscopy, and quantum electronics. Particular attention was given to glasses, as this is an aspect of the solid state in which the American University has specialized, using the facilities of the Egyptian Atomic Energy Establishment for high energy radiation sources when needed. The old and the new, for instance, were linked at the American University in Cairo in magnetic-resonance studies of irradiated silica glass from the Libyan desert, as well as of ancient glasses manufactured thousands of years ago. Glass lasers are being studied at this university. Egypt has the raw materials for glass, but metals are relatively scarce, and so research on glasses is a "natural."

The United Arab Republic realizes the vital role of science in modern civilization and so has developed large research institutes. The members of the conference therefore were given the opportunity of visiting its National Research Center and its Atomic Energy Establishment.

The American University in Cairo has an enrollment of about a thousand, and is small compared with the Cairo University of the UAR, which has over fifty-thousand full-time students. Also it is very young compared to the thousand-year-old Al Ashar University, where the conference members were tendered a luncheon. Nevertheless it has a significant role to play. In the words of Bartlett, its president: "This university is a meeting point of cultures and languages . . . it is organized along patterns of an American university, and draws most of its financial support from the United States. At the same time its staff is largely Egyptian, and over 65% of its students are from the United Arab Republic. Its work is tailored to fit the needs and resources of this country." Torkey says: "We of the Supreme Council for Scientific Research (which he heads) are following with great interest the solid-state science program at the American University in Cairo, and have noted with satisfaction the important role it is playing in the educational and scientific life of this country."

> J. H. Van Vleck Harvard University

Coherence and Quantum Optics

A three day international conference on coherence phenomena and quantum optics was held 22-24 June, 1966, at the University of Rochester. The second conference of its kind, it was sponsored by the Air Force Office of Scientific Research and the Air Force Cambridge Research Laboratories.

Three hundred registrants gathered for this occasion. There were pure mathematicians, theoretical physicists in classical optics and in quantum field theory, experimental physicists in fluctuations and in holography, experts in noise and in coherence, and research directors from universities, industries, and government laboratories. It is truly remarkable how this very young field of quantum optics

and coherence establishes a common bond for such a varied group that usually does not speak a common technical language.

In an invited paper, R. Hanbury Brown (Sydney) described the very large stellar intensity interferometer that has been put into operation at Narrabri Observatory in Australia "to measure the apparent angular diameter of all hot stars brighter than $m_{\rm pg}$ + 2.5 and with spectral types earlier than F." Roy J. Glauber (Harvard) reviewed quantum optics and E. C. George Sudarshan (Syracuse) presented an elementary discussion of coherence theory, both classical and quantum mechanical.

Whereas these papers dealt primarily

ENGINEERS & SCIENTISTS

Advancing the Art of

ELECTRO-OPTICAL SYSTEMS

IS A CAREER IN ITSELF AT

Servo's leadership for today's IR uses in aerospace programs for navigation and military reconnaissance, and in many industrial applications,
is well recognized. Combining advanced communications, electronic control, logic, programming
and display techniques with a mastery of electromagnetic phenomena in the microwave, infrared
and ultraviolet spectra, Servo continues to create
new products and new systems.
Applications of optical sensors—designing electronic systems that convert sensed information
into meaningful images, signals, corrective actions
or situation analysis is an art at Servo that penetrates all echelons of the company. Engineers and
Scientists who can see their own careers advancing in this stimulating center of electro-optical
activity are urged to investigate the following
immediate positions.

OPTICAL ENGINEER OPTICAL ENGINEER
Minimum M.S., with background knowledge of
techniques and methods of optical component
fabrication, to design optical elements and systems working from broad customer/system needs
and/or specifications. Should have the ability to
meet and converse with customers to help them
decide what they need. Supervisory experience
helpful but not necessary. Ability to work with
EEs and MEs is required.

Degree Electronics or Physics. Minimum 5 years experience infrared equipment technology, IR Systems Analysis, Transistor Circuit Design, Knowledge Optics and IR detectors.

ELECTRICAL ENGINEERS

with ability to do circuit design, to evaluate designs of others, to translate customer/systems needs into working hardware, to supervise technicians and other engineers, and to plan and implement a project without straying from the budget. Capability to conceive and write proposals, make presentations to customers and corporate personnel, and the ability to communicate with customers and potential customers is desirable.

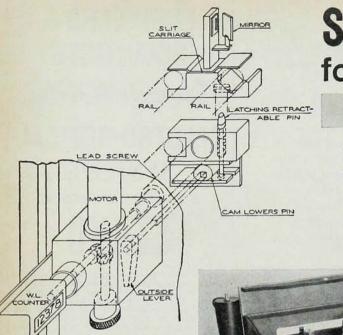
PRODUCT DEVELOPMENT ENGINEERS

BSEE, Minimum 5 years experience in transistor HF Pulse and digital circuit design with broad background encompassing vacuum tube and analog techniques.

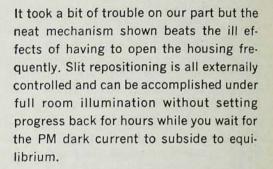
NEW ADVANCED DEVELOPMENT GROUP Offers ground floor opportunities in a wide diversity of projects. We want self-starters who can initiate projects and follow through for the following positions:

SOLID STATE PHYSICISTS-EXPERIMENTALISTS
B.S. or M.Sc. level with some knowledge of theory
and strong lab background. Additional background
in microwave helpful but not necessary. Familiarity with measuring techniques and instrumentation required.

OPTICAL PHYSICISTS-EXPERIMENTALISTS


B.S. or M.Sc. level with knowledge of classical and modern (linear) physical optics and strong lab background. Knowledge of modulation techniques helpful but not necessary. Acquaintance with instrumentation techniques required.

For an interview at your convenience, send resume in confidence to: Arthur P. Levine, or call (516) 938-9700.


111 New South Road, Hicksville, L.I., N.Y.

An Equal Opportunity Employer

SPEX POLYCHROMATOR for f/6.3 SPECTROGRAPH

- Houses 6 or more 9558-size photomultipliers
- Individually positioned exit slits are 20 mm high and up to 3 mm wide
- Reversible motor furnishes rapid slit traverse; mechanical counter reveals its position within 0.01 mm

EEED

INDUSTRIES, INC. • BOX 798, METUCHEN, N. J. 08840 • 🕿 (201)-549-7144

PHYSICISTS-SCIENTISTS

KEY PERSONNEL is a National organization devoted exclusively to the selective search for competent careerists among the technical disciplines.

Working closely with clients Coast to Coast, it is our policy to provide a professional service to scientists and engineers, that is ethical, knowledgeable and confidential. Our service is designed to provide YOU with a convenient focal point from which to explore, easily and efficiently, the numerous career opportunities existing anywhere in the U. S.

Our service to you—the individual scientist or engineer—is WITHOUT COST since our search fees are assumed by our organizational clients, who are Industrial, Defense and non-profit organizations engaged in the advancement of the state-of-the-art

We are currently searching to fill a broad spectrum of positions from semi-junior to General Manager across the entire continent.

If you would like to explore for yourself, our unique approach, write for our confidential summary form or forward a copy of your current résumé as soon as possible:

John F. Wallace Executive Vice President

KEY PERSONNEL CORP.

218 Tower Bldg.

Baltimore, Md. 21202

ELECTRICAL, ELECTRONIC ENGINEERS or PHYSICISTS

PARTICLE ACCELERATOR, Sponsored by the AEC Operated by Princeton Univ. & The Univ. of Pennsylvania, located at Princeton Univ.

Stimulating work in a University Program of basic research

This new research tool now has several positions available in design, development, operating and research areas. Experienced, professional personnel are needed. Interest or experience in following areas helpful:

Electricity Magnetism RF Circuitry Servomechanisms Pulse Techniques Digital Techniques Electro-Mechanical Electronic Maintenance & Trouble Shooting Electronic Design & Development Health Physics Programming Industrial Electrical Power

Work in suburban Princeton area. Salary comparable to industry. Unusual benefits include 4 weeks' vacation, tuition loan program with loan forgiving feature and generous retirement plan.

Write to A. C. Allen

ACCELERATOR

P.O. Box 682, Princeton, N.J.

An equal opportunity employer

with the general aspects of the theory, Willis E. Lamb (Yale) and one of his former students, Marlan Scully, presented the first detailed quantum theory of a laser. This theory is an important improvement of the semiclassical theory given by Lamb a few years ago, in which the laser field was treated classically. The theory can be used directly by the experimental physicist, since the operation of the laser is analyzed in detail and the relations of practical interest for it are now available. Some of these results were also reported by Melvin Lax who approached this problem from the very different angle of the theory of noise sources and their effects on lasers.

One of the most enlightening papers presented by the theorists was the invited talk by John R. Klauder on the mathematical problem of the diagonal representation. He settled a controversy that has been going on for some time concerning the conditions under which such a representation exists. Its existence is of course closely related to the possibility of a classical description of coherence phenomena in place of a quantum mechanical one. This equivalence theorem permits a classical phase-space distribution function for any quantummechanical density matrix, so that it yields the same average whenever one is dealing with bounded operators.

Among the many theoretical papers were several that succeed in obtaining results of quantum optics with weaker assumptions than was possible until now. In particular, the semiclassical approach proved very successful and one speaker, Edwin T. Jaynes, went so far as to speculate that quantum electrodynamics may actually not be necessary. He was immediately challenged to a fifty-dollar bet, which he accepted. This was one of several discussions at the conference that rose considerably above the "cool and collected" level.

A deeper and very interesting invited paper was presented by H. W. Lewis, who, in collaboration with Marvin L. Goldberger and Kenneth M. Watson, entered upon the quantum mechanical measurement theory of scattering: the measurement of fluctuations and of correlations in beams of

scattered particles and its dependence on the signal-to-noise ratio.

An area of controversy still exists in the theory of the interaction of electrons with laser beams. Zoltan Fried and collaborators reported no intensity-dependent frequency shift in Compton scattering when computed by strict perturbation approximation (Feynman-Dyson). The work by T. W. B. Kibble and by Howard Reiss did not use this approach and yielded interesting predictions.

The experimental papers given at the conference also covered a wide range of topics, including electromagnetic-field fluctuations, scattering, absorption and emission of resonance radiation, and various nonlinear optical effects. In particular, the subject of laser noise and coherence was well covered, since almost every group in this field presented a paper.

Experiments on intensity noise in lasers were described by J. A. Armstrong and A. W. Smith of IBM, C. Freed and H. A. Haus of MIT, F. T. Arecchi of the University of Milan, and H. Gamo, R. Grace and T. Walter of the University of Rochester. The experiments described involved both the digital method of photon counting and the analog method of intensity correlations. It was generally agreed that the various different experimental observations are in substantial agreement concerning the properties of laser intensity noise. For a single-mode laser operating at an output power that is more than five times the output power at threshold the laser output may be usefully described as a superposition of an amplitude-stabilized field and a smaller narrowband Gaussian noise field. However, when the laser is operated closer to threshold the nonlinear character of the laser oscillator requires a more complicated description of the laser output. Observations in this region close to threshold were reported by Armstrong and Smith and by Gamo et al. In both cases the observations are in substantial agreement with the theories of the laser near threshold worked out by Hans Risken, by Lax and Hempstead, and by Lamb and Scully.

Leonard Mandel and Frederic Davidson of the University of Roches-

OFFERS UNIQUE CAPABILITIES IN

ELECTRO-OPTIC CRYSTALS

The leading device and systems laboratories increasingly specify Isomet because of its broad facilities and capabilities in electro-optic crystals. Isomet has under one roof an integrated facility for crystal growth, precision optical grinding and polishing, device fabrication, quality control, evaluation, and testing. Additionally, an active solid-state research and development group continuously provides state-of-the-art technology. Call on Isomet for any needs you have concerning:

Now Available

LITHIUM NIOBATE LITHIUM TANTALATE

Conductive Crystal Coatings — transparent, metallic grid, and opaque.

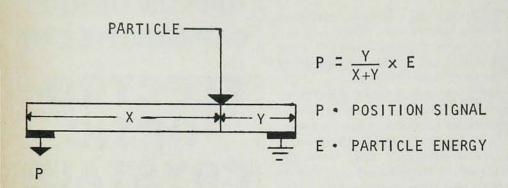
Reflective Crystal Coatings

Electro-Optic Crystal Light Modulators
— for use from the UV to the IR.

Optical Harmonic Generation Crystals

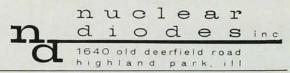
— accurately oriented and mounted for
rapid and precise alignment in laser
systems.

Pockels Cell Q-Switches • Polarizing Optics • Laser Crystals • Multilayer Dielectric Reflectors • Custom Crystal Growth and Fabrication


TECHNICAL ASSISTANCE — Isomet's technical staff will be pleased to discuss your requirements and to send you appropriate technical literature. Write or call Warren Ruderman or Tom Nowicki.

ISOMET

433 COMMERCIAL AVENUE


PALISADES PARK, N. J. (201) 944-4100

NUCLEAR TRIODE

The "Nuclear Triode" is a position and energy sensitive solid state detector for particle measurements. This single detector yields simultaneously the energy and position of impact for any entering particle. Rectangular triodes in lengths up to 50 mm and an annular triode with 16mm 0.D. are available. Write us for further information and prices on nuclear triodes, or our other solid state detector products, silicon and germanium detectors, vacuum chambers, cryostats and cooled F.E.T. preamps.

*Trademark

NYU MATERIALS REVIEW

4TH YEAR

A publication series designed as a service to the materials industries and professions.

For further information and application form contact:

Mr. Mel Berk, Editor NYU Materials Review New York University School of Engineering and Science Bronx, New York 10453 or call 584-0700, ext. 205

PHYSICISTS ENGINEERS MATHEMATICIANS

Engineering-Physics Company, founded in 1960, is now growing into new fields of research and development. Singular opportunity exists for scientists and engineers who have the resourcefulness, imagination, and technical background to assume a responsible role.

Project emphasis is in:

Instrument Development
Electromagnetics
Mechanics
Magnetohydrodynamics
Shock Hydrodynamics

Address inquiries to Robert M. Kimzey, Jr.

ENGINEERING-PHYSICS COMPANY

12721 Twinbrook Parkway Rockville, Maryland 20852 (Suburban Washington, D.C.)

An equal opportunity employer.

ter described experiments in which triple photon coincidences can be studied and which therefore measure sixth-order correlation functions of the electromagnetic field. Another experiment that further broadens the kind of field measurements possible was described by Arecchi. He obtains experimentally the joint photon-counting distribution for the probability that n_1 photons will be counted at time t_1 and that n_2 photons will be counted at a later time t2. Very precise photoncounting equipment in use at RRE, Malvern was discussed by T. P. Mc-Lean

Werner Martienssen and Eberhard Spiller from the University of Frankfurt described experiments in which laser light was scattered and combined with unscattered light in order to construct a field with desired fluctuation properties. These properties were then verified by photon counting. The conference papers fully covered the wide variety of experimental means that have been developed for measuring the higher-order moments and correlation functions of optical electromagnetic fields.

The subject of resonance radiation, and in particular the coherent forward scattering of resonance radiation, was covered in papers by G. W. Series of the Clarendon Laboratory and by E. W. Otten of Heidelberg University. Of special interest was the significant spectral narrowing observed in the forward scattered radiation.

Further topics of experimental papers included a review by S. R. Hartmann of the experiments on photon echoes carried out at Columbia and a description by F. S. Harris and G. C. Sherman of Aerospace Corp. of experiments in which they have compared the scattering by small latex spheres of both coherent and incoherent light. For the conditions under which the comparison was made no significant difference was found.

There is no doubt that this was a successful conference, thanks especially to the untiring efforts of the hosts Emil Wolf, Leonard Mandel and Joseph H. Eberly.

J. A. Armstrong
IBM Watson Research Center

F. Rohrlich Syracuse University