simplified approach to self-diffusion that would seem to be a useful tool for the nonspecialist. S. F. Edwards masterfully and entertainingly reviewed the problems of electronic states in liquid metals. M. H. Cohen introduced the exciting question of the possibility of the conduction electrons in some alkali metals having "liquid-like characteristics" that strongly effect their ability to alloy.

Last but not least, J. S. L. Leach raised the question: "What do we know of the thermodynamic properties of liquid metals and what do we want to know?" It is to be hoped that the answer to this and other questions raised at the conference might receive more attention in a subsequent report on the sequel to this conference. It was proposed that a next meeting be held in three years. Ziman amended this by suggesting that the next meeting be held not sooner than three years hence. This suggestion was heartily supported by the attendees weary from five days "education, enthusiasm, exhaustion . . . " and etc.

> Arthur Paskin Brookhaven National Laboratory

Cairo Solid State

In the Middle East the three important American educational endeavors at the college level are Robert College in Istanbul, the American University in Beirut, and the American University in Cairo. The Cairo institution was not founded until 1919, and so is probably not as well known as the other two, both of which are about a hundred years old. However, it has developed greatly in recent years. When I was in Cairo in 1957, it had no graduate or research program in physics. Under the able leadership of Adli Bishay, chairman of its department of physical science, all this is changed. The graduate enrollment in solid-state science has grown from 5 in 1962 to 50 in 1966. The construction of the new six-story science building, with fifty-thousand square feet of floor space, can be regarded as symbolic of this expansion. It is situated on the edge of Liberation

Square, and its architecture somehow manages to harmonize both with the older Moslem buildings and newer edifices such as the Nile Hilton, which are located around this square.

The resources of the American University in Cairo are not sufficient to carry graduate instruction in all aspects of physical science, and so the graduate program, in contrast to the more diversified undergraduate curricula, is wisely focused almost entirely on the solid state. (The other areas in which there are graduate programs are English, economic-political science, sociology-anthropology, and Arabic studies.) Nuclear physics, for instance, is left to the Atomic Energy Establishment, the National Research Center and universites of the United Arab Republic.

It is thus appropriate that the dedication of the new building should be accompanied by a conference on solidstate science, which was held 3-8 September, 1966. This conference was sponsored not alone by the American University, but "in cooperation with the Supreme Council for Scientific Research in the United Arab Republic." Particularly gratifying was the interest that leading figures in the educational scientific life of the UAR took in the conference, and the hospitality that they showed. The four speeches at the dedication ceremony that opened the conference included not only brief addresses by Thomas A. Bartlett, president and Adli Bishay, of the American University, but also ones by A. Riad Torkey, head of the Supreme Council for Scientific Research of the UAR and Hussein Said, minister of higher education, who conveyed personal greetings from President Nasser.

In connection with the dedication, Theodore Edison presented to the American University an incandescent lamp with a carbonized bamboo filament made by his father, Thomas Edison, in 1884, and also one of Edison's electromotographs, which were precursors of the chalk telephone. In accepting these gifts, Bishay said: "Their presence in Cairo . . . represents the very sort of intellectual and cultural exchange that is at the core of the objectives of this university. As an Egyptian, I take this gesture as a dec-

MATERIALS RESEARCH

New and expanding projects in the Ceramics Research Division at IITRI require experimental physicists at all levels.

Current programs include:

- electronic conduction mechanisms
- ferroelectric and ferromagnetic behavior
- Semi-conductor single crystals
- dielectric breakdown
- thermal radiation

Opportunities exist for physicists to work in an interdisciplinary materials research group contributing to a better understanding of materials behavior. Encouragement to publish papers.

Senior level positions require a Ph.D. degree, while BS and MS degrees are suitable for other levels. Experimental physicists should also have a strong theoretical background and some applications capability.

If interested in these positions, please send resume, including salary requirements, to Mr. Daniel J. O'Leary at:

(formerly Armour Research Foundation)

10 West 35th Street
Chicago, Illinois 60616

An Equal Opportunity Employer

If you bought your Princeton Gamma-Tech Ge(Li) detector before we hung this warranty

it's retroactive.

One-year full-use warranty. If it's wrong, we'll fix it. Or replace it. (See warranty tag, above.) Even if you bought it without this warranty.

What if it's your fault? We'll service any Princeton Gamma-Tech detector promptly. At nominal charge.

High resolution in a big detector. We're supplying Ge(Li) detectors with sensitive volumes up to 42cm³. Resolution at 1.33 MeV is as good as 5 keV (FWHM), using an FET preamplifier at room temperature. Our smaller detectors give resolution as good as 3.5 keV (FWHM) under these conditions. Supplied with standard or "chickenfeed-type" dewars to suit your requirements. Telephone for information or write for Bulletin R-5.

PRINCETON GAMMA-TECH

Box 641, Princeton, N. J., U.S.A. • (609) 924-7310

CAREER OPPORTUNITIES

AT THE

CORPORATE RESEARCH CENTER

OF

AMERICAN STANDARD

American-Standard has dedicated itself to meeting and overcoming formidable problems created by urbanization and industrialization. Perhaps the most challenging of these is the measurement, control, and handling of the environment around us . . . air and water . . . the temperatures that affect them, the waste they are contaminated by and the noise generated by them.

Our Research Center is conveniently located in New Jersey only 35 miles from New York City and is near Rutgers and Princeton Universities. We are engaged in long range company sponsored programs aimed at solving these environmental problems.

Qualified candidates who are seeking research and development work under industrial sponsorship will be interested in the following immediate positions:

RESEARCH SCIENTIST

(Plasma Physics Specialist):

Doctorate or Masters level in Plasma Physics or Engineering with competence in the application of the concepts, principles and techniques of non-equilibrium magnetoplasmadynamics, electrogasdynamics and associated techniques. Will be responsible for execution of Corporate Research and Development related to Plasma Physics and Engineering. Will also provide advice and guidance to the operating divisions on problems and applications throughout the Corporation.

RESEARCH SCIENTIST

(Solid State Physics):

Ph.D. in Physics or Materials Science with knowledge of theory of the solid state and appropriate experimental techniques. Responsibilities include supervision, execution and participation in Corporate Research and Development related to Physics and Electronic technology. Will initially be involved in selecting and conducting a project in thermoelectricity, magnetic transitions, defects in solids, ferroelectricity or other phenomena in solid state physics.

We welcome your resume. Please direct it to:

William Gebhardt

RESEARCH DIVISION
P. O. Box 2003, New Brunswick, New Jersey

An Equal Opportunity Employer M/F

laration of friendship and good will from the American people to the Egyptian people."

The conference was attended by 173 delegates, including 108 from the UAR, 28 from the USA, and 37 from 15 other countries. Each of the sessions had as chairman a visitor from abroad, and as a cochairman a scientist from the United Arab Republic. The general topic of the conference was "Interaction of Radiation with Solids." There was considerable emphasis on radiation damage or effects. Three of the eight sessions were concerned with this topic, the others dealing with magnetic resonance, conductivity, metals, spectroscopy, and quantum electronics. Particular attention was given to glasses, as this is an aspect of the solid state in which the American University has specialized, using the facilities of the Egyptian Atomic Energy Establishment for high energy radiation sources when needed. The old and the new, for instance, were linked at the American University in Cairo in magnetic-resonance studies of irradiated silica glass from the Libyan desert, as well as of ancient glasses manufactured thousands of years ago. Glass lasers are being studied at this university. Egypt has the raw materials for glass, but metals are relatively scarce, and so research on glasses is a "natural."

The United Arab Republic realizes the vital role of science in modern civilization and so has developed large research institutes. The members of the conference therefore were given the opportunity of visiting its National Research Center and its Atomic Energy Establishment.

The American University in Cairo has an enrollment of about a thousand, and is small compared with the Cairo University of the UAR, which has over fifty-thousand full-time students. Also it is very young compared to the thousand-year-old Al Ashar University, where the conference members were tendered a luncheon. Nevertheless it has a significant role to play. In the words of Bartlett, its president: "This university is a meeting point of cultures and languages . . . it is organized along patterns of an American university, and draws most of its financial support from the United States. At the same time its staff is largely Egyptian, and over 65% of its students are from the United Arab Republic. Its work is tailored to fit the needs and resources of this country." Torkey says: "We of the Supreme Council for Scientific Research (which he heads) are following with great interest the solid-state science program at the American University in Cairo, and have noted with satisfaction the important role it is playing in the educational and scientific life of this country."

> J. H. Van Vleck Harvard University

Coherence and Quantum Optics

A three day international conference on coherence phenomena and quantum optics was held 22-24 June, 1966, at the University of Rochester. The second conference of its kind, it was sponsored by the Air Force Office of Scientific Research and the Air Force Cambridge Research Laboratories.

Three hundred registrants gathered for this occasion. There were pure mathematicians, theoretical physicists in classical optics and in quantum field theory, experimental physicists in fluctuations and in holography, experts in noise and in coherence, and research directors from universities, industries, and government laboratories. It is truly remarkable how this very young field of quantum optics

and coherence establishes a common bond for such a varied group that usually does not speak a common technical language.

In an invited paper, R. Hanbury Brown (Sydney) described the very large stellar intensity interferometer that has been put into operation at Narrabri Observatory in Australia "to measure the apparent angular diameter of all hot stars brighter than $m_{\rm pg}$ + 2.5 and with spectral types earlier than F." Roy J. Glauber (Harvard) reviewed quantum optics and E. C. George Sudarshan (Syracuse) presented an elementary discussion of coherence theory, both classical and quantum mechanical.

Whereas these papers dealt primarily

ENGINEERS & SCIENTISTS

Advancing the Art of

ELECTRO-OPTICAL SYSTEMS

IS A CAREER IN ITSELF AT

Servo's leadership for today's IR uses in aerospace programs for navigation and military reconnaissance, and in many industrial applications,
is well recognized. Combining advanced communications, electronic control, logic, programming
and display techniques with a mastery of electromagnetic phenomena in the microwave, infrared
and ultraviolet spectra, Servo continues to create
new products and new systems.
Applications of optical sensors—designing electronic systems that convert sensed information
into meaningful images, signals, corrective actions
or situation analysis is an art at Servo that penetrates all echelons of the company. Engineers and
Scientists who can see their own careers advancing in this stimulating center of electro-optical
activity are urged to investigate the following
immediate positions.

OPTICAL ENGINEER OPTICAL ENGINEER
Minimum M.S., with background knowledge of
techniques and methods of optical component
fabrication, to design optical elements and systems working from broad customer/system needs
and/or specifications. Should have the ability to
meet and converse with customers to help them
decide what they need. Supervisory experience
helpful but not necessary. Ability to work with
EEs and MEs is required.

Degree Electronics or Physics. Minimum 5 years experience infrared equipment technology, IR Systems Analysis, Transistor Circuit Design, Knowledge Optics and IR detectors.

ELECTRICAL ENGINEERS

with ability to do circuit design, to evaluate designs of others, to translate customer/systems needs into working hardware, to supervise technicians and other engineers, and to plan and implement a project without straying from the budget. Capability to conceive and write proposals, make presentations to customers and corporate personnel, and the ability to communicate with customers and potential customers is desirable.

PRODUCT DEVELOPMENT ENGINEERS

BSEE, Minimum 5 years experience in transistor HF Pulse and digital circuit design with broad background encompassing vacuum tube and analog techniques.

NEW ADVANCED DEVELOPMENT GROUP Offers ground floor opportunities in a wide diversity of projects. We want self-starters who can initiate projects and follow through for the following positions:

SOLID STATE PHYSICISTS-EXPERIMENTALISTS
B.S. or M.Sc. level with some knowledge of theory
and strong lab background. Additional background
in microwave helpful but not necessary. Familiarity with measuring techniques and instrumentation required.

OPTICAL PHYSICISTS-EXPERIMENTALISTS

B.S. or M.Sc. level with knowledge of classical and modern (linear) physical optics and strong lab background. Knowledge of modulation techniques helpful but not necessary. Acquaintance with instrumentation techniques required.

For an interview at your convenience, send resume in confidence to: Arthur P. Levine, or call (516) 938-9700.

111 New South Road, Hicksville, L.I., N.Y.

An Equal Opportunity Employer