WHO ARE PHYSICISTS? WHAT DO THEY DO?

Table 1. I	ndustrial	Salaries b	y	Job and	Experience*
------------	-----------	------------	---	---------	-------------

Years of experi Work activity	ience →	. 1	2-1	5–9	10-14	15–19	> 20	Total reporting salary
OCTORATE DEGREE	No.	57	323	531	445	193	253	1776
Research and	-	13.2	14.3	16.2	18.3	19.7	22.0	17.4
development	Q_3 Q_2	12.6	13.4	14.5	16.0	17.4	18.2	15.0
(1832)	Q_1	12.0	12.5	13.5	14.7	15.0	15.7	13.5
Management or	No.	1	12	97	226	168	326	773
administration	Q_3			19.2	23.0	25.0	28.0	25.0
(837)	Q_2			16.8	19.8	22.0	24.0	21.0
	Q_1			15.4	17.7	20.0	20.0	17.8
Other	No.	1	3	20	23	16	79	115
(147)	Q_3						23.0	22.0
	Q_2						21.0	18.5
	Q_1						18.0	15.3
Total number (2816)		59	338	648	694	377	658	2664
ASTER'S DEGREE	No.	57	353	437	305	106	133	1344
Research and	-							
development	Q_3	9.4	10.3	12.8	15.0 13.5	16.8 15.0	16.5 14.1	13.8 11.4
(1418)	Q_2 Q_1	8.8	8.8	10.2	12.0	12.5	12.0	9.8
Managament of	No.	1	18	58	131	87	131	402
Management or administration	-	-1	10	_				
(427)	Q_3			16.0 13.5	18.2 16.2	21.0	21.0	20.0
	Q_2 Q_1			12.0	14.5	14.5	15.9	13.8
Other	No.	4	22	32	35	18	42	134
(157)			44	32	33	10	74	
	Q_3			10.9	13.0		18.0	16.3 12.6
	Q_2 Q_1			10.5	15.0		10.0	10.4
Total number	21	62	393	527	471	211	306	1880
(2002)	-	02	373	321	7/1	211	500	1000
ACHELOR'S DEGREE	-							
D	No.	37	494	426	197	88	92	1289
Research and	Q_3	1 24	9.2	11.4	14.1	16.0	16.1	12.0
development (1357)	Q_2	7.5	8.5	10.4	12.5	13.9	14.5	10.0
	Q_1		7.8	9.2	11.4	11.5	12.3	8.5
Management or administration	No.	1	46	88	113	73	119	412
(446)	Q_3		0.0	13.0	18.0	19.0	22.0	18.0
(1.10)	Q_2		9.0	11.3	15.0	16.0	18.0	14.4
61	Q ₁	2	E 2	10217	13.5		14.0	11.5
Other	No.	3	53	43	42	28	42	198
(221)	Q_3		9.0	10.0	10.0	10.0		13.5
	Q ₂		8.1	10.0	12.0	12.0	15.6	11.0
	Q_1	-	7.3		252	400	70-1	9.0
Total number		41	593	557	352	189	253	1899

by Sylvia Barisch

- The 1964 median salary for physicists and astronomers taken as a group was \$1000 higher than that of all scientists.
- The physics-astronomy group is younger than scientists in general.
- Forty-two percent of them are employed by industry.

So say recently analyzed statistics from the 1964 National Register of Scientific and Technical Personnel. Since 1954 the American Institute of Physics has maintained the physics and astronomy section of the register under contract with the National Science Foundation.

These statistics for the physics community have been gathered from questionnaires that scientists returned to us from an April 1964 mailing. They represent the full-time-employed group reporting salary. We ask each respondent to tell us such things as for whom he works, how long he has worked, how much he earns, what is his highest degree, what is his area of highest professional competence, and what is his principal work specialty.

Altogether 440 000 questionnaires went out to all scientists and 225 000 usable answers came back. It is estimated that the respondents included 90 percent of all those in the US who hold scientific doctorates. We of the physics-astronomy section mailed about 48 000 questionnaires and got back

The author is in charge of the physicsastronomy section of the National Register at the American Institute of Physics.

^{*} Salaries are in thousands of dollars per year; "No." means number in group analyzed; Q_3 is third-quartile salary, which divides group into one quarter paid more and three quarters paid less; Q_2 is median (second quartile); Q_1 is first quartile; empty spaces indicate group was too small to justify analysis; numbers in left-most column indicate total number in group and include those *not* reporting salary.

about 35 000 of them. Many of the respondents were eliminated, however, on the basis of their answers. For example, 2000 of the 1964 respondents belonged in other disciplines and we sent their responses to more appropriate societies; 3000 did not meet minimal qualifications for inclusion (most of them will meet the requirements this year and we will contact them again); 3000 engineers were processed by us for the register but not included in the physics-astronomy group. The 27 000 remaining answers were processed for the physics-astronomy section.

How should we count?

As is true of all statistics, classification is difficult. Do you group according to training, job titles, professional identification, memberships, or some other set of criteria? The numbers you get depend upon the grouping you choose. In the 1964 questionnaire, scientists were asked to classify themselves by selecting from a list of "major disciplines." For most of the physics-astronomy group this did not present a problem. However, some wrote in their own jobs-"teacher" or "administrator." Others, particularly in interdisciplinary areas of science. wrote in "biophysicist," "operations analyst," "chemical physicist," etc. Tables 1-4 show salary information compiled for those who identified themselves professionally as physicists

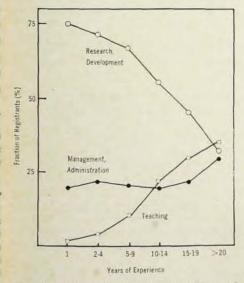


Fig. 1. Work activity as a function of years at work. Graph shows that physicists and astronomers "grow" out of research and development into management and teaching.

Current statistics from the physics-astronomy section of the National Register show that 20 000 persons in salary analyses are earning more than colleagues in other sciences and more than a similar group was earning two years earlier.

Table 2. Academic Salaries by Job and Experience

Years of exper Work activity	$ience \rightarrow$	1	2-1	5-9	10-14	15–19	> 20	Total reporting salary
DOCTORATE DEGREE	No.	154	520	502	166	174	200	2150
Research and			539	593	466	174	289	2150
development	Q_3	8.7	10.4	14.0	16.0	18.0	19.4	15.0
(2279)	Q_2	8.1	8.7	10.0	14.0	15.8	16.6	11.6
	Q_1	7.2	8.0	8.4	11.7	12.8	14.5	8,5
Management,	No.	1	14	43	100	64	226	417
administration, other	Q_3				20.0	23.0	22.0	21.0
(455)	Q_2			14.7	17.3	18.9	18.5	18.0
(199)	Q_1				13.2	15.0	15.5	14.3
Teaching	No.	19	265	444	437	239	637	1957
(2059)	Q_3		8.9	10.4	12.3	13.8	15.0	12.6
	Q_2		8.2	9.1	10.6	11.4	12.4	10.3
	Q_1		7.5	8.5	9.2	9.9	10.3	8.7
Total number (4793)		174	818	1080	1003	477	1152	4524
MASTER'S DEGREE								
	No.	152	690	356	99	30	29	318
Research and	Q_3		9.6	12.1	13.7			13.0
development (1564)	Q_2		8.7	10.0	12.7	13.7	15.0	10.3
(1304)	Q_1		7.2	8.5	11.0			8.4
Management,	No.	12	69	30	25	14	43	101
administration,	Q_3							16.0
other	\widetilde{Q}_2						13.0	11.4
(240)	Q_1							9.3
Teaching	No.	85	442	367	206	136	329	1197
(1593)	Q_3	7.0	7.1	7.9	8.9	9.4	10.0	8.6
	\widetilde{Q}_2	6.2	6.5	7.0	7.8	8.4	8.7	7.4
	Q_1	6.0	6.0	6.3	7.0	7.3	7.6	6.5
Total number		249	1201	753	330	180	401	1616
(3397) BACHELOR'S DEGREE								
	No.	114	623	160	45	10	18	196
Research and	Q_3		8.1					11.0
development	Q_2		7.2	9.3	11.0			8.5
(1135)	Q_1		6.4					7.2
Management,	No.	18	69	26	18	8	20	71
administration,	-							
other	Q_3 Q_2							11.5
(199)	Q_1							
Teaching	No.	68	405	124	43	22	45	338
(738)	Q_3		6.3	7.2				7.3
	Q_2		5.5	6.3	7.4		8.5	6.0
	Q_1		5.0	5.6				5.3
Total number (2072)		200	1097	310	106	40	83	605

or astronomers (excluding all others) and reported their salaries - about 17 000. Table 5 gives comparable figures for all scientists.

However, traditionally National Register data have been computed on the basis of indicated area of highest competence, which is selected from a list of specialties. For reasons of comparability of data, these groupings have been retained for all 1964 data compilations other than the five tables just mentioned. On this specialty basis we have a different physics-astronomy population of approximately 20 000 full-time-employed reporting salary. The lines here are less clearly drawn; the physicist or astronomer indicating that his primary interest is in atmospheric thermodynamics would be counted as a meteorologist; a physicist who showed that he was a computer specialist would be included with the mathematicians; one concerned with the physical properties of materials would be grouped with geologists. On the other hand, a chemist who selected spectroscopy or rheology as representa-

It is apparent that although we can answer questions about how many people are specialists in certain areas of science, there is as yet no perfect way of counting heads. Bureau of the Census figures, which are solicited from households, Bureau of Labor Statistics, which are gleaned from employers, and National Register figures, which come directly from the individual scientists, differ greatly. A study that has been proposed would try to discover whether there is a predictable variance and what, if anything, can be done to bring different figures into closer agreement.

tive of his highest competence would be counted as a member of the physics

community.

Because National Register data are derived directly from the science community, they are recognized to be the best source of information on the nation's scientific resources and have been widely used especially by government bodies.

Work and age

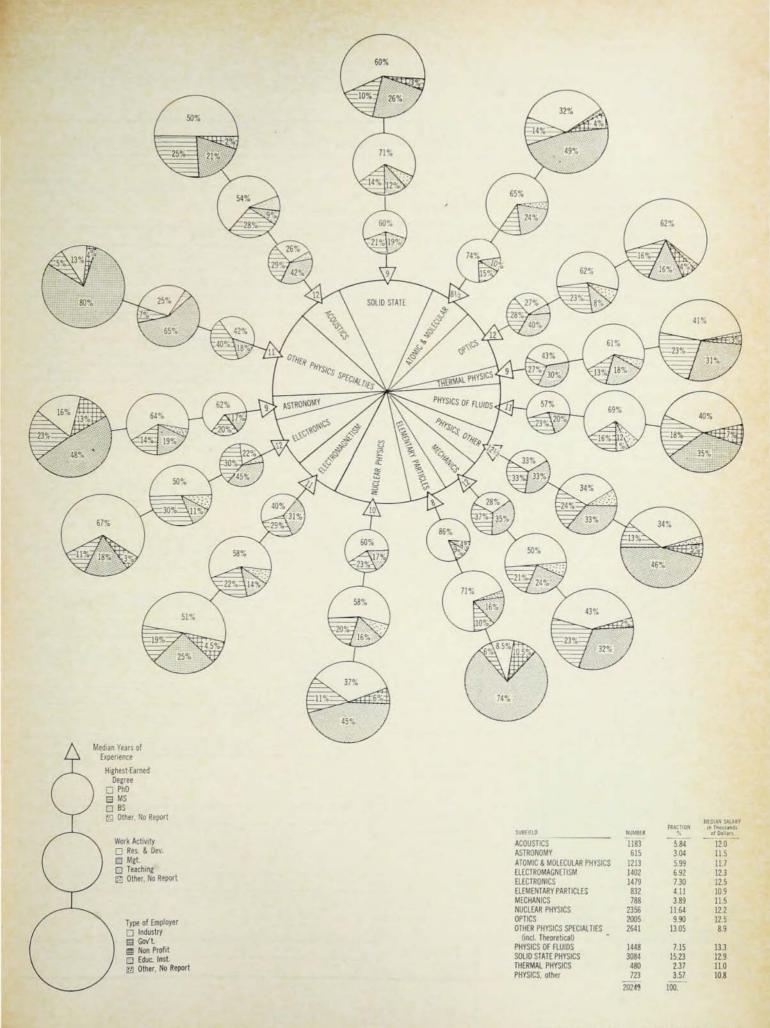

1964 answers to the questionnaire show that research, development, or design is the first work activity for 60

Fig. 2. Distribution of physics-astronomy

ics. Also	shown are	e median sal	aries
other qu	antities as t	they apply in	subf

Table 3. Government Salaries by Joh and Experience

Years of exper	ience -	→ 1	2-1	5–9	10-14	15-19	> 20	Total reporting salary
OCTORATE DEGREE								
OCTORATE DEGREE	No.	18	87	167	141	53	92	541
Research and			11.8	13.6	15.0	16.2	17.2	15.0
development	Q_3 Q_2		10.4	12.1	14.1	14.0	17.0	12.6
(562)	Q_1		10.0	10.6	12.5	12.8	15.7	11.4
Management or	No.	1	5	12	39	38	139	237
administration							19.0	18.5
(238)	Q_3 Q_2				16.7	17.2	18.0	17.7
	Q_1				1011		17.2	16.2
Other	No.	-	1	4	12	6	23	43
(47)	5.511	_				7.	77.	
	Q_3 Q_2 Q_1							17.0
Total number	-	19	93	183	192	97	254	821
(847)		1.2	7.5	103	174		234	021
IASTER'S DEGREE	No.	19	144	161	135	59	74	565
Research and	-		9.3	11.0	100	14.5	To the	12.5
development (600)	Q_3 Q_2		8.6	10.3	12.9	13.0	15.0 14.0	10.5
	Q_1		7.9	9.5	11.0	12.0	12.5	9.0
Management or	No.	-	15	20	44	26	84	188
administration	Q_3	-					17.2	16.5
(190)	Q_2				14.1	15.6	16.3	14.5
	\widetilde{Q}_1				17.1.1.1	7.7.3.77	14.0	12.5
Other	No.	3	19	10	7	10	18	62
(71)	$\overline{Q_3}$							14.5
	Q_2							12.1
	Q_1							8.6
Total number	-	22	178	191	186	95	176	815
(861)							12.00	-
ACHELOR'S DEGREE								
MONELON S DEGREE	No.	28	319	238	125	47	57	789
Research and	Q_3		9.0	10.6	12.5		14.5	
development	Q_2	7.0	8.0	10.0	11.7	12.5	14.5	11.0 9.5
(822)	Q_1		7.6	9.3	10.6	12.5	12.0	8.0
Management or	No.	1	17	65	64	42	74	261
administration	Q_3			11.7	15.0			
(267)	Q_2			10.3	14.0	14.0	17.7 16.7	15.7 13.6
	Q_1			10.0	12.4	14.0	15.0	10.6
Other	No.	4	37	30	22	2	7	93
(107)	$\overline{Q_3}$		3-3/1					_
	Q_2		8.0	10.3				12.1 10.0
	Q_1							8.0
Total number		33	373	333	211	91	138	
(1196)	-		010	333	211	71	138	1143

percent of the full-time-employed physicists and astronomers. For 20 percent it is teaching; for 16 percent, administration. Figure 1 shows how these primary responsibilities change with age of the respondents.

Almost a third of the 1964 registrants indicated that their area of greatest competence was in nuclear physics (including elementary particles) or solid state physics. Figure 2 shows the distribution of the registrants among subfields of physics and the median salaries and other variables in the subfields.

For all scientists registered in 1964, the median age was 38 years. For the total physics-astronomy group (27 000) it was 34, and for full-time-employed members of the group it was 36.5. Almost 80 percent of the total group were between 25 and 44. Almost half of the full-time group had a doctorate; more than a quarter indicated the master's as their highest degree. Of the PhD's more than half worked for educational institutions and almost a third for industry. Figure 3 shows the distribution of degrees in different age groups and also the age distribution of all physicists and astronomers.

856 or 3.2 percent of the total phys-

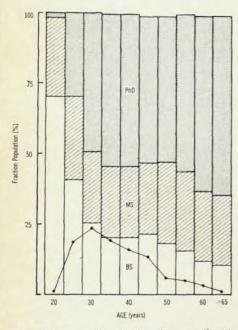


Fig. 3. Degree distribution by age (bars) and age distribution of all physicists and astronomers (line) in 1964 National Register. (Roughness at top is a real effects showing that some who are physicists do not fall among groups who have the usual degrees.)

ics-astronomy registrants were women, but only 2.2 of the full-time-employed group were women. About one third of the women had earned a doctorate; slightly more than a third had a master's as their highest degree. Inadequate numbers precluded salary analyses for women except for those with

Table 4. Nonprofit-Organization Salaries by Job and Experience

Years of exper Work activity	$ience \rightarrow$	1	2-4	5-9	10-14	15-19	> 20	Total reporting salary
DOCTORATE DEGREE								
	No.	18	87	111	84	39	51	374
Research and	Q_3		12.6	14.5	18.0		22.2	16.0
development (395)	Q_2		10.0	12.9	14.4	17.8	19.0	13.2
(373)	Q_1		9.0	11.4	12.7		16.0	10.8
Management or	No.	1		11	27	23	56	108
administration	Q_3						27.0	25.0
(119)	Q_2				18.0		24.0	21.0
	Q_1						20.0	17.3
Other	No.	1	1	5	14	6	15	41
(42)	Q_3 Q_2 Q_1							18.0
Total number	~	20	88	127	125	68	122	523
(556)	-					-		
MASTER'S DEGREE								
MASTER S DEGREE	No.	9	40	34	27	13	13	113
Research and development	Q_3							13.2
	\widetilde{Q}_2		8.7	10.0	13.5			10.8
(141)	Q_1							8.7
Management or	No.		1	5	15	9	15	44
administration (46)	Q_3 Q_2 Q_1							17.5
Other	No.	5	3	7	9	2	2	22
(28)	Q_3 Q_2 Q_1							
Total number		14	44	46	51	24	30	179
(215)								
BACHELOR'S DEGREE								
	No.	6	39	28	18	9	9	97
Research and development	Q_3							13.0
(113)	Q_2		7.4	10.2				10.0
	Q_1	-			-	-		7.6
Management or administration	No.		2	7	9	3	7	25
(28)	Q_3 Q_2 Q_1							13.7
Other	No.	1	6	1	4	3	4	17
(20)	Q_3 Q_2 Q_1							
Total number		7	47	36	31	15	20	139
(161)		7					20	137

For Any Operational Amplifier Requirement Philbrick Is The Source

If you're looking for:

economy

speed

miniature packaging

drift stability

low offset current

high output voltage

high impedance

reference material

application engineering

Model P55AU & PP55AU — \$20.00 (less in quantity)

Model P45A & PP45 — 100 MHz Gain-Bandwidth

Models Q25AH & Q85AH — in low profile TO-8 transistor case

Model SP656 — < 1 µV per day

Model $P2A = < 10^{-12} A$.

Model SP102 - ±100V at ±10 mA.

Model P25A & PP25A — 10¹² Ω

New Applications Manual — Write on letterhead for free copy.

Qualified consulting services available on a world-wide basis.

See Philbrick for: the widest range of models... the most extensive application assistance. Write, wire or phone... find out why more engineers than ever before rely on high-performance Philbrick Operational Amplifiers. Philbrick Researches, Inc., 27-R Allied Drive at Route 128, Dedham, Massachusetts 02026. Telephone (617) 329-1600.

Engineering Representatives

Ala.: Huntsville (205) 536-8393, Mobile (205) 954-9298; Ariz.: Phoenix (602) 265-3629; Cal.: Los Angeles (213) 937-0780, Palo Alto (415) 326-9800, San Diego (714) 222-1121; Colo.: Denver (303) 733-3701; Conn.: West Hartford (203) 233-5503, Greenwich (203) 661-5140; Fla.: Ft. Lauderdale (305) 564-8000, Orlando (305) 425-5505; Ill.: Chicago (312) 676-1100, (312) 676-1101; Ind.: Indianapolis (317) 356-4249; La.: New Orleans (504) 242-5575; Md.: Baltimore (301) 727-1999; Mass.: Wakefield (617) 245-5100; Mich.: Detroit (313) 838-7324; Minn.: Minneapolis (612) 545-4481; Mo.: St. Louis (314) 741-3779; N. M.:

Albuquerque (505) 268-3941; N. Y.: Buffalo (716) 835-6168, DeWitt (315) 446-0220, Lancaster (716) 835-6188, Valley Stream (516) 561-7791; N. C.: Winston-Salem (919) 725-5384, (919) 725-5385; Ohio: Dayton (513) 298-9964, Westlake (216) 871-8000; Okla.: Tulsa (918) 627-6199; Pa.: Philadelphia (215) 277-0559, Pittsburgh (412) 371-1231; Tex.: Dallas (214) 526-8316, Houston (713) 781-1441; Utah: Salt Lake City (801) 466-4924; Va.: Alexandria (703) 836-1800; Wash.: Seattle (206) 723-3320.

EXPORT: N.Y.: New York (212) 246-2133. CANADA: Quebec: Montreal (541) 482-9750, Ontario: Toronto (416) 789-4325.

ELECTRONIC ANALOG COMPUTING EQUIPMENT for MODELLING, MEASURING, MANIPULATING and MUCH ELSE

five to nine years of job experience. Figure 4 compares salary figures for men and women with similar educational backgrounds and years of work experience.

Employer and salary

Employers of the full-time physicists and astronomers fall mainly into four categories: industry (employing 42 percent of the group), educational institutions—including government-sponsored research installations (39 percent), the federal government (14), and nonprofit research organizations (4.5).

When comparing salaries for teaching with other activities, weight must be given to the fact that most teaching salaries are based on a nine-month working period, but others are based on twelve months. In both 1962 and 1964 the median for calendar-year academic salaries was \$2000 higher than for academic-year salaries. Table 6 compares college and university salaries as functions of rank and salary base.

The National Science Foundation has planned mobility studies based on the ten years of available register data.

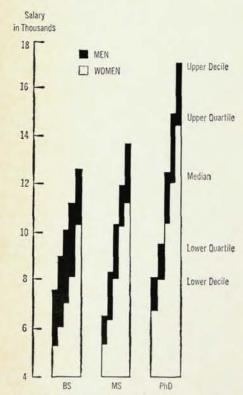


Fig. 4. Men are paid more than women. Bars compare quartiles, bottom and top deciles for scientists with similar educational backgrounds and years of experience.

These longitudinal analyses will produce some interesting patterns to demonstrate the effects or lack of effects of such factors as government spending, strong educational facilities, financial remuneration, etc., on the

mobility—geographical and otherwise
—of scientists. We anticipate that
these will provide trend studies of a
nature and scope never before possible
and will shape the register into an
even better tool.

Table 5. Median 1964 Salaries for All Sciences by Job and Experience

				70 71	75.70		Total
Years of experience →	1	2-4	5-9	10-14	15-19	> 20	group
NDUSTRY							
PhD—R & D	11.3	12.0	13.1	14.4	15.1	16.0	13.4
M or A		12.6	15.0	17.0	18.5	20.0	18.0
M.S.—R & D	8.4	9.1	10.5	12.0	13.0	13.2	11.0
M or A		9.5	12.0	14.0	15.9	18.0	15.0
B.S.—R & D	7.2	8.0	9.6	10.8	11.5	12.0	9.7
M or A	7.3	8.2	10.8	12.6	14.4	16.5	14.0
EDUCATIONAL INSTITUTIONS							
PhD-R & D	7.5	8.5	10.0	12.0	13.0	15.0	10.6
M or A		9.5	11.0	13.1	14.8	16.0	14.8
Teaching	7.5	8.0	8.7	10.0	11.0	12.0	10.0
M.S.—R & D	6.5	7.2	8.4	9.5	10.0	10.3	8.5
M or A		7.0	8.8	10.3	11.1	12.0	10.4
Teaching	6.3	6.3	7.0	7.8	8.3	8.5	7.3
B.S.—R & D	6.0	6.3	8.3	10.0	10.0	11.6	8.0
M or A		6.8	9.6	10.8	11.5	12.6	10.8
Teaching	5.2	5.3	6.2	7.0	7.3	8.0	6.0
FEDERAL GOVERNMENT							
PhD—R & D	8.5	10.0	10.7	12.2	12.8	14.1	12.0
M or A		11.5	12.0	14.0	15.0	16.7	15.0
M.S.—R & D	7.0	8.0	9.1	10.6	11.7	12.1	9.9
M or A		7.0	9.0	11.2	12.5	14.1	12.1
B.S.—R & D	7.0	7.9	9.5	10.4	11.0	12.0	9.5
M or A	5.8	6.2	8.3	10.2	11.3	13.3	10.4
NONPROFIT ORGANIZATIONS							
PhD—R & D	8.5	10.0	11.7	13.8	15.0	15.8	12.5
M or A			13.0	16.0	18.0	19.5	17.0
M.S.—R & D	7.3	8.5	10.2	12.0	12.2	13.0	8.4
M or A			10.9	13.5	15.0	17.5	14.0
B.S.—R & D	5.4	7.0	9.4	11.3	11.8	12.0	9.2
M or A			12.0	13.2	14.1	16.0	14.

Table 6. 1964 Salaries for Teaching Physicists

Salary base	All ranks	Prof.	Assoc. prof.	Asst. prof.	Instr.	Lect.	Res.	No rpt.
All	9.7	13.5	10.0	8.2	6.5	9.6	8.4	9.8
Aca. yr.	9.1	13.0	9.7	8.0	6.5	7.5	0.4	9.5
Cal. yr.	11.0	16.0	12.2	9.9	7.4	10.0	8.7	10.0
No rpt. of base	10.7	14.6	10.3	8.4		10.0	0.7	11.0