
FURTHER PROGRESS IN HELICOPTER ROTOR LOAD PREDICTION

Continuing its tradition of research in aeroelastic problems, Cornell Aeronautical Laboratory is developing improved methods for predicting airloads on helicopter rotor blades as a critical step in developing more efficient and longer life blades and in reducing vibration levels in future helicopters.

In a recent program employing a complex, non-periodic representation of the rotor wake, for example, CAL investigated the aerodynamic loadings and response of rotor blades undergoing transients in collective pitch. Predicted results were in good agreement with measured results; one result, obtained for up collective pitch at cruise speed, is depicted below. As a consequence of these initial successes, our analysis now has expanded to include further refinements in the wake modeling and other elastic degrees of freedom believed pertinent for advanced helicopter designs.

Improved prediction methods developed at CAL already have contributed to advances in the state of the art of blade design. The Laboratory's program in this problem area is continuing under Army sponsorship to investigate both single and tandem rotors in steady-state and transient flight. In allied programs, the aerodynamic forces developed by VTOL propellers during transitional flight and the aerodynamic characteristics of wings immersed in the propeller slipstream also are being analyzed.

Working in an environment of modern equipment and techniques, the CAL technical staff continues to make research advances in these and other fields. Typical areas include computer sciences, flight research, avionics, aerospace vehicle research, hypersonics, electromagnetics, applied physics, operations research, transportation and systems research.

If your experience qualifies you to join this community of science, mail the coupon for an interesting briefing on this unusual research team. Positions are available in both Buffalo and Washington.

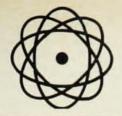
CORNELL AERONAUTICAL LABORATORY, INC.

of Cornell University

J. T. Rentsci CORNELL AI Buffalo, New	ERONAUTICAL LABORATORY, INC	HRL
	nd me a copy of your factual, illustrated p a," and an application blank.	rospectus, "A Community
☐ I'm not in your lates	terested in investigating job opportunities no t "Report on Research at CAL."	ow, but I would like to see
Name		
Street		
City	State	Zip
	An Equal Opportunity Employer	

analytical methods are not presented, though the discrete space techniques seem readily translatable to numerical methods. The ubiquity of mathematical abstraction, nomenclature, and rigor, whose presence separately would be praiseworthy, tends to obscure otherwise clear discussions.

THEORY AND DESIGN PRACTICE


POWER TRAVELLING-WAVE TUBES. By J. F. Gittins. 276 pp. American Elsevier, New York, 1965. \$10.00.

by Hans J. Hagger

Since the publication of Pierce's famous book on travelling-wave tubes, which cleared up the interaction mechanism between an electron beam and a waveguide structure from a theoretical point of view, a large number of papers has appeared, but a book disclosing theory and design practice was missing. Gittins, a British expert in this field, aimed to write a treatise on travelling-wave tube design that would give practical advice for construction and the theory that rules the design parameters, for both conventional and crossed-field devices.

The introductory chapter gives a brief survey of travelling-wave tube history and indicates, by describing some typical tubes, the topics of the book. Chapter 2 deals with the basic interaction theory of both forward and backward waves from the point of view of vector addition of the circuit voltages. Summaries of Pierce's small signal theory and of Slater's large signal approach and some remarks on velocity tapers are included. In chapter 3 slow-wave structures, such as the helix, the cross-wound helix, and periodically loaded waveguide structures, as well as coupled-cavity systems are explained by using the ω-β diagram or by the filter theory. The clover-leaf structure by Chodorow-a very important circuit for power travelling-wave tubes-is described but, unfortunately, not analysed. This is a pity because the British specialists have done excellent work on this

The reviewer, a specialist in electricity and electronics, is associated with Albiswerk Zurich.

VALUABLE McGRAW-HILL PHYSICS BOOKS

Berkeley Physics Course . . .

Volume 1: MECHANICS

By CHARLES KITTEL and WALTER D. KNIGHT, both of the University of California, Berkeley; and MALVIN A. RUDERMAN, New York University. 502 pages, \$5.50.

This new approach develops in detail the consequences of the special theory of relativity, emphasizes the motion of charged particles in the electric and magnetic fields, relates immediately to the experiments in the Berkeley Physics Laboratory, and presents elementary mechanics so paths are seen leading to other parts of physics, astronomy, geophysics, chemistry, and biophysics.

Volume 2: ELECTRICITY AND MAGNETISM

By EDWARD M. PURCELL, Harvard University. 479 pages, \$5.50.

This book covers the fundamentals of classical electricity and magnetism, building on the background of mechanics and relativity provided by Volume 1. The basic laws of the electromagnetic field are developed from Coulomb's Law through Maxwell's Equations. The development differs from the traditional one in treating the electric and magnetic fields of moving charges as manifestations of relativity and invariance of electric charge. The approach to electric and magnetic phenomena in matter is primarily microscopic, with emphasis on the nature of atomic and molecular dipoles, both electric and magnetic. A large number of problems are included, many of which are designed to extend the discussion in the text or to introduce a related topic or application.

LABORATORY PHYSICS: Parts A, B, C, D

By the Berkeley Physics Laboratory. Compiled by ALAN M. PORTIS, University of California, Berkeley. Each part, \$2.25.

Other Important Texts . . .

MODERN PHYSICS FOR ENGINEERS

By OTTO OLDENBERG, Emeritus, Harvard University; and NORMAN C. RASMUSSEN, Massachusetts Institute of Technology. Available in March.

Designed for junior and senior students in engineering and allied sciences, this book covers atomic, nuclear, and solid state physics using only simple calculus.

QUANTUM MECHANICS AND PATH INTEGRALS

By RICHARD FEYNMAN and A. R. HIBBS, both of California Institute of Technology. International Series in Pure and Applied Physics. 500 pages, \$12.50.

Nobel Prize Winner Richard Feynman, who was instrumental in developing the fundamental physical and mathematical concepts underlying the path integral approach to quantum mechanics, contributes a comprehensive and scholarly text on the subject.

THE MOON: A Fundamental Survey

By RALPH B. BALDWIN, Oliver Machinery Co. 160 pages, \$4.95 (cloth), \$2.50 (soft cover).

A narrative text, offering the latest and most accurate information in a form which can be easily understood by the nonprofessional.

COLLEGE PHYSICS, Fourth Edition

By ROBERT L. WEBER, MARSH W. WHITE, and KENNETH V. MANNING, all of Pennsylvania State University. 710 pages, \$9.75.

This edition presents the fundamental concepts and methods of classical physics as well as contemporary developments in the field.

PRINCIPLES OF PHYSICS

By FRED BUECHE, University of Dayton. 660 pages, \$9.75.

One of the most teachable texts ever written for the precalculus course in general physics. Great care is taken to utilize what the student already knows of physical phenomena.

Send for your examination copies today

McGRAW-HILL

BOOK COMPANY

330 WEST 42ND STREET, NEW YORK, N. Y. 10036

We need people who work

Many job offers today stress recreation, gracious living, and ideal conditions.

Strangely enough, few of them say much about work. Since work is the main purpose of employment, we'd like to say merely that the Center for Naval Analyses of The Franklin Institute employs operations and systems analysts, mathematicians, physical scientists, and research engineers to assist the U.S. Navy in improving present operations and in preparing to meet future requirements.

Our new Systems Evaluation Group is at work on technological models relating systems characteristics to system costs, and we've recently increased the responsibilities and scope of the Marine Corps Operations Analysis Group.

This increase in activity has not increased our total staff. It has, however, increased our need for variety of education and experience in the few openings that are still available. These aren't easy jobs, and they demand considerable analytical ability; but they pay competitively and afford considerable satisfaction to a person who likes to see his ideas put into practice.

Yes, we need people who work.

For further information, write: Director CENTER FOR NAVAL ANALYSES

Dept. PT 1401 Wilson Blvd. Arlington, Va. 22209

CENTER FOR NAVAL ANALYSES
OF THE FRANKLIN INSTITUTE

INS - Institute of Naval Studies
SEG - Systems Evaluation Group
OEG - Operations Evaluation Group
NAVWAG - Naval Warfare Analysis Group
MCOAG - Marine Corps Operations Analysis

An equal opportunity employer

structure. The behavior of the electron beam in its focusing field, both constant and periodic, is considered in chapter 4, including the peculiar instabilities in hollow beams. In chapter 5 the production and collection of the electron beam outside the interaction space are dealt with. In the next section the author considers interaction and electron guns in crossedfield devices; for the appropriate large signal theory he refers to the original papers on this subject. In chapter 7 the feedback mechanism and the prevention of backward-wave oscillations are dealt with. The next chapter is devoted to the design of input and output transformers coupled to different slow-wave structures (including windows) and to some technological possibilities of their design. Chapter 9 deals with technology and materials of tube construction, cathode construction, and pumping techniques. In the last chapter measurement techniques related to the determination of coldand hot-tube parameters are consid-

To a microwave tube engineer this book will fill an open space between Pierce's book and the wide-spread publications in different periodicals. This book will not be a textbook, but a workbook. It can be recommended to every microwave-tube engineer.

GASES IN VARIOUS PHASES

PHYSICS OF HIGH PRESSURES AND THE CONDENSED PHASE. A. Van Itterbeek, ed. 598 pp. (North-Holland, Amsterdam) John Wiley, New York, 1965. \$22.50

by Carl W. Garland

The title of this collection of chapters by 21 different authors is quite a bit more general than its contents. The first ten chapters (about 75 percent of the material) are mostly concerned with the equilibrium properties of simple, liquified, and solidified gases at low temperatures and moderate pressures. Very little is said about more typical solids except for two chapters (65 pages) concerning the effect of pressure on superconduc-

Carl W. Garland is an associate professor of chemistry at MIT and a specialist in physical chemistry.

tivity and the electrical properties of metals and semiconductors. In addition, some spectroscopic work is covered in two chapters (70 pages), which review the effect of pressure on electronic, infrared, and Raman spectra, primarily of gases. The most interesting aspect of that coverage is a good review of induced infrared absorption (with emphasis on hydrogen). These four chapters, at the end of the book, are only vaguely related to the initial material.

The quality of the first ten chapters is extremely variable. Chapters 1-3 (which deal with various experimental aspects of high pressure work) are all disappointing. More than half of chapter 1 is devoted to the "theory and practice . . . of a thick-walled cylinder submitted to pressure"; chapter 2 contains a summary of empirical engineering data on many alloys used in "modern hardware programs such as cryogenic fueled missiles"; chapter 3 involves a survey of all the various methods of determining pVT data, arranged according to the ten principal laboratories in which this work has been done during the past 60 years. Chapters 4, 5, and 7 contain concise and critical reviews of pVT data, velocities of sound, and phase-equilibrium data for liquified and solidified gases. These chapters are well written and useful. There are also special chapters (8 and 9) on helium: a brief survey of liquid ³He and ⁴He under pressure, and an excellent presentation of the properties of solid 3He and 4He. Finally, there are chapter 6, which gives a brief but clear review of various theories of the liquid state, and chapter 10, which gives a superficial review of experimental methods of determining transport properties.

Why has this book been written and published? Some of the material is readily available elsewhere; some is unrelated to the general theme, and some does not merit special attention. The four or five best chapters would have made a more coherent and less expensive monograph with considerable appeal. Furthermore the book has been poorly edited. There is an annoying repetition of material on experimental pVT methods in chapters 1, 3, and 4; and there