ated circuitry; detector logic, circuits, and data processing; and spark chambers and track imaging.

The first session will consist entirely of invited papers, but contributions are solicited for the remaining five sessions on subjects dealing with theoretical and practical aspects of newer components, equipment, and techniques. Abstracts must be sent by December 1 to W. A. Higinbotham, Brookhaven National Laboratory, Upton, Long Island, N.Y. 11973.

Further information can be obtained from G. A. Morton, RCA Laboratories, Princeton, N.J. 08540.

Phonons

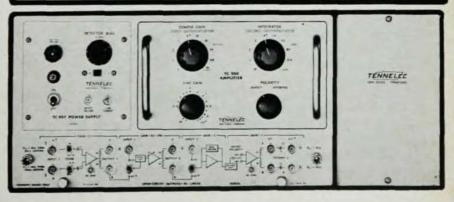
The Institute of Physics and the Faysical Society is arranging a conference concerning both theoretical and experimental work on phonons, to be held April 6 and 7, 1966, at the University of Edinburgh.

The technical program will cover electron-phonon, neutron-phonon, photon-phonon, and phonon-phonon interactions; the interpretation of phonon dispersion curves, phonons in imperfect crystals and in liquids, etc. It is also hoped that it will be possible to include a few short contributions on such closely allied topics as spin waves.

Contributed papers should be of about 15 minutes duration, and abstracts (300 words) should be sent by February 1 to Prof. W. Cochran, Department of Natural Philosophy, The University, Edinburgh 8, Scotland, Further information and application forms will be available in January from the Meetings Officer, The Institute of Physics and the Physical Society, 47 Belgrave Sq., London SW 1, England.

ICO

A congress on recent progress in optical physics will be held May 2 to 7, 1966, in Paris.


The technical program will include propagation of light, coherence, diffraction, polarization, nonlinear optics, optical information processing, etc. Spectroscopy as applied to the study of matter, as well as the purely quantized aspects of the phenomena,

TENNELEC TC 200

A different linear pulse amplifier for nuclear spectrometry

This series is intended to explain the superiority of the TC 200 as a nuclear pulse amplifier ■ A complete technical description of this Fairstein-designed instrument is available on request ■

RESOLUTION VS. COUNT RATE - Preamplifier noise, detector processes, and main amplifier shaping networks control spectral peak width at low rates. Unipolar pulse shaping is indicated. The activeelement networks of the TC 200 are optimum
At high rates, statistical fluctuations in the undershoot cause peak broadening, centroid shift, and a skirt on the low energy side. Bipolar shaping cures these defects. In conventional amplifiers with bipolar shaping, a combination of baseline fluctuation and differential nonlinearity in the stage preceding the second differentiator causes peak broadening at high rates, particularly when overloading signals are present. The TC 200 is free of this defect; all stages have the linearity and dynamic range of the output stage to improve resolution and increase the permissible overload level Also at high rates, the sum spectrum due to overlapping pulses becomes prominent. This spectrum is in the form of skirts on both sides of the main peak. For a given product of amplifier resolving time and count rate, skirt area but not shape is independent of pulse shape With regard to your experiments, the TC 200 gives better energy resolution than any other amplifier, particularly at high count rates ■ TENNELEC INSTRUMENT CO., INC. P. O. Box D. Oak Ridge, Tennessee

