

Company and university laboratories are getting revealing results with these furnaces.

as grown by the University of Tokyo's Solid-State Institute

Designed for research scientists of compound crystals, Gakei's high-temperature, high-pressure electric furnace offers these proven features:

- Grows single crystals of compounds with high vapor pressure characteristics, e.g., II-VI compounds.
- Generates heat up to 4,500° F, permits pressure up to 4,000 psi, with power consumption of 30 kw.
- Heating element (graphite) mounted in the pressure chamber permits use of high pressure of controlled atmosphere such as argon gas, nitrogen gas, oxygen gas.
- Complete with program-controlled temperature controller and temperature control transformer (saturable core reactor type).
- Can be converted to a ZONE REFINING FURNACE for zone melting grown crystals, by equipping an up and down mechanism of crucible and two heaters.

FOR DETAILED INFORMATION PLEASE WRITE

3108, Senju-Sakuragicho, Adachi-ku, Tokyo, Japan

and Ionization of Atoms by Electron Impact" by D. W. O. Heddle and M. J. Seaton, "Inelastic Electron-Molecule Collisions" by C. A. Mc-"Electron-Ion Recombina-Dowell tion" by D. R. Bates, "Inelastic Heavy Particle Collision Processes" by A. Dalgarno, "Elastic Scattering of Atoms and Molecules in the Thermal Energy Range" by R. B. Bernstein, "Afterglow Atomic Collision Processes" by M. A. Biondi, "Collision Processes Leading to Optical Masers in Gases" by C. K. N. Patel, and "Muonium and Positronium Physics" by J. M. Bailey and V. W. Hughes. Taken together, these reviews cover a wide area of collision physics and provide many references.

The contributed papers are divided into twelve sections: slow electron scattering by atoms, resonances (in electron scattering), polarization of radiation emitted on electron impact, excitation and ionization of atoms by electron impact, further theory (mainly electron-atom collisions), electron-molecular collisions, recombination, negative ions, photo-processes, inelastic heavy particle collisions, elastic heavy particle collisions, collisions with molecules, and other topics. In several cases papers appear to be placed in the wrong sections. For example several papers which would logically be expected under "excitation and ionization of atoms by electron impact" appear under the headings "resonances" and "polarization of radiation emitted on electron impact".

Two discussion sessions were held at the conference and transcribed for the proceedings. The theoretical discussion session centered on various approximations used in scattering calculations. The session on experimental problems dealt with crossedbeam experiments involving chargedneutral, charged-charged, and neutralneutral particle interactions. Some of the problems discussed were: detection of neutral beams, determination of excited-state concentrations in neutral beams, low-noise ion sources, and the perturbation of one charged beam by another.

As is often the case with conference proceedings, the papers are variable in quality, but taken as a whole

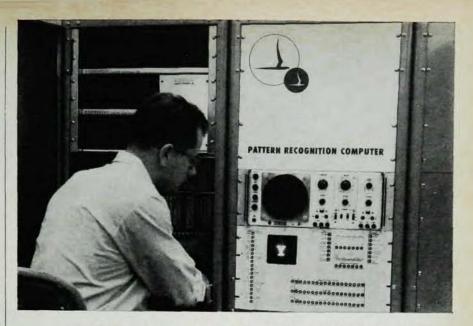
provide a good cross section of the state of collisions research at the time of the conference. All serious workers in collision physics should have access to a copy of this volume, but because of its high price, it is likely that this access will be through library rather than individual ownership. For those with neither, it should be noted that reprints of many of the articles are available from the authors.

Space Physics and Radio Astronomy, H. Messel and S. T. Butler, eds. 174 pp. St. Martin's Press, New York, 1964, 54.25. Reviewed by H. J. Hagger, Albiswerk, Zurich, Switzerland.

Space physics and radio astronomy are the fields of scientific research which are most admired by many people, and they also have the working medium in common, space. This book is a record of a series of lectures given for science teachers by world experts at the third Nuclear Research Foundation Summer School in Australia. Each section, written by a competent author from an Australian university, gives a very brief survey of its topic, but the book as a whole does not hold what one would expect under such a title. It is to some extent a collection of selected knowledge, with Leonardo da Vinci and Michelson as starting points and ending with the Australian radio telescopes and the first man-made satel-

The first two chapters deal with some results of radio astronomy in general and the design of the 210-ft Australian radio telescope in particular. The third chapter shows some future projects of radio astronomical research both in Australia and elsewhere. The next two sections expose problems in resolving power of interferometers with some application to radio frequencies. In chapters 6 and 7 we learn some facts about meteor astronomy and about conclusions from observations of the physics of the upper atmosphere. Chapter 8 extends these remarks to the phenomenon of aurorae and its relationship to the Van Allen belts. Chapter 9, on elementary mechanics of flight, starts with the first tries in free flight and ends up with aerodynamical stability. When dealing with air lift and drag, the author makes some remarks on orbital motion of satellites. In chapter 10, elements of propulsion are traced by just mentioning the principle of thrust. In the last section, the reader finds some words on the number of air molecules at ground level and a few data on the first manmade satellites and the mass ratio of rockets to overcome gravitational forces of the earth. A very detailed index of subjects is attached and some references for each section are given.

It is very difficult for the reviewer to find and specify a group of persons who may need this book, if we exclude the participants of that summer school. For them the book will certainly be very valuable as a record of the lectures they attended. Far more problems are mentioned than could have been considered with care and with success in a book of this size. One could say that less would have been more.


Elements of Acoustics. By J. Blitz. 136 pp. Butterworths. Washington. D. C., 1964. \$4.25.

Reviewed by Walter G. Mayer, Georgetown University.

About a year before the present little volume appeared, another book by the same author became available (Fundamentals of Ultrasonics, reviewed in Physics Today, April 1964, p. 72). Comparing these two books one notices that about one-half of the material contained in Elements of Acoustics was taken from the earlier book, in many instances verbatim with the same figures and formulas. These "repeated" sections deal with the fundamental concepts of sound propagation, velocity, absorption, and reflection.

The other half of the book treats in a simplified manner assorted topics related to hearing, noise, building acoustics, sound recording, and acoustic measurements.

This little book seems to be intended for readers with a casual interest in acoustics. The serious student may find the simplicity of representation refreshing-but he will have to go elsewhere for detailed answers to specific questions.

ANOTHER STEP FORWARD IN PATTERN RECOGNITION

Project engineer Les Pownall checks out the optical input channel of a new pattern recognition computer designed and nearing completion at Cornell Aeronautical Laboratory. Soon this computer will hasten solutions to problems which range from automatic target recognition to the reading of alpha-numeric characters.

The Laboratory has been building its analytical and experimental pattern recognition capabilities for nearly a decade. From the first perceptron concept through several research programs in automatic photo sorting, information processing systems for command and control, and automatic classification of radar returns, CAL has pioneered in extending the art of recognizing temporal and spatial patterns.

These efforts in the computer sciences as well as similar areas of research at CAL demand highly advanced facilities and equipments. The most advanced are created by our own people and developed with our own funds. The new pattern recognition computer, along with an associated device - a high resolution flying spot scanner for scanning and digitizing patterns - came into being by just such means.

The CAL technical staff enjoys a broad technical program of independent research — over \$20 million annually — in a welcome environment of modern equipment and techniques. In addition to the computer sciences, the Laboratory is at the forefront of such fields as flight research, avionics, aerospace vehicle research, low-speed aerodynamics, hypersonics, applied physics, operations research, applied mechanics, transportation and systems research.

If your experience qualifies you to join this community of science, mail the coupon for an interesting briefing on this unique research team. Positions are available in both Buffalo and Washington.

CORNELL AERONAUTICAL LABORATORY, INC.

OF CORNELL UNIVERSITY

	T. Rentschler RNELL AERONAUTICAL LABORATORY, INC. Iffalo, New York 14221
	Please send me a copy of your factual, illustrated prospectus, "A Community of Science," and an application blank.
	I'm not interested in investigating job opportunities now, but I would like to se your latest "Report on Research at CAL."
Na	me
Na Str	meeet
Na Str Cit	eet