much enriched by historical notes, and by chapters on gemstones and on crystals formed by biologically active polymers.

It is difficult, however, to write satisfactorily for two classes of reader at one and the same time. As a personal opinion, I think the author would have done better to sacrifice the interests of the few interested laymen, for whom the text will be hard going, and to concentrate more on the requirements of science students. As it is, the book is one which no student could read without being much better and wiser for it. With the elimination of the more elementary material, and a slightly more formal approach where quantitative considerations become important, it would have made an excellent and appealing textbook at a level which has thus far been neglected.

Physical Acoustics. Principles and Methods. Warren P. Mason, ed. Vol. 1, Part A, 515 pp., \$18.00; Vol. 1, Part B, 376 pp., \$13.50. Academic, New York, 1964. Reviewed by Walter G. Mayer, Georgetown University.

This is the first part of a series of six volumes on physical acoustics which, when completed, should become a very important contribution to the literature in this field. The multivolume work is designed to serve as a reference book as well as a textbook on an advanced level.

All of the seven chapters in Part A of Volume 1 were written by highly qualified experts. Chapters 1 (by R. N. Thurston) and 3 (by Berlincourt, Curran, and Jaffe) could be regarded as a very thorough introduction to wave propagation in liquids and solids, and transducer materials. One can hardly think of any basic aspect related to these topics which is not considered in these two sections. Chapter 2 (T. R. Meeker, A. H. Meitzler) is devoted to guided waves in plates and cylinders. Specific geometrics for ultrasonic delay lines are discussed in Chapter 6 (J. E. May), which treats various modes in strip and wire delay lines, and in Chapter 7 (W. P. Mason) which gives a short discussion of multiple reflection delay lines. Another somewhat longer chapter by W. P. Mason is devoted

to the use of piezoelectric crystals and mechanical elements in oscillators and filters. Chapter 4 (H. J. Mc-Skimin) illustrates many experimental techniques for determining elastic properties of liquids and solids and presents a thorough discussion of the theory related to mechanical properties of substances.

Although Part B is a continuation of Part A, it is primarily concerned with semiconductor devices capable of kilomegacycle producing acoustic waves. An introductory chapter (W. P. Mason) gives the mathematical and physical background, concentrating on semiconductors, p-n junctions, and Esaki diodes. Some of the topics discussed in this section are taken up more specifically in a chapter (R. N. Thurston) on the theory of piezoresistance coefficients and the use of semiconductor transducers for strain gages. The chapter on the use of p-n junction transducers (M. E. Sikorski) not only gives useful information on the operation of semiconductor diodes and many experimental results but also discusses various applications of these devices. The section on resistive layer transducers (D. L. White), although not overly long, presents a good treatment of principles of operation of depletion layer, diffusion layer, and epitaxial transducers. Both theoretical and experimental aspects of these highfrequency devices are discussed.

There are three additional chapters which, as far as subject matter is concerned, are more closely related to the content of Part A than to what may be considered the main topic of Part B, i.e., semiconductor devices. One of these chapters is a very short discussion (E. Eisner) of design characteristics of resonant vibrators. Another chapter (B. Carlin) gives a descriptive résumé of ultrasonic processing techniques used in cleaning, welding, drilling, and many other technical applications. Finally, there is an extensive section (H. G. Flynn) on acoustic cavitation in fluids. Since the liquid state of matter is much less understood than the solid state, it is not surprising that some explanations of cavitation processes are open for discussion. Nevertheless, the author of this chapter se-

New from Blaisdell

ELEMENTARY PLASMA PHYSICS

By Lev A. Arzimovich

This book interprets fundamentals of plasma physics, and discusses methods of plasma processes as well as methods of analysis of such processes.

1965. 200 pages. Paper, \$2.25.

INTRODUCTION TO THE THEORY OF RELATIVITY AND THE PRINCIPLES OF MODERN PHYSICS

By Huseyin Yilmaz

Relativity is discussed in the light of recent discoveries and of new applications of experimental techniques in the physical sciences. 1965, 260 pages, \$8.50.

Recently published

ELECTROMAGNETIC FIELDS AND INTERACTIONS

By Richard Becker, edited by Fritz Sauter

Volume I, Electromagnetic Theory and Relativity

1964. 374 pages. \$9.50.

Volume II. Quantum Theory of Atoms and Radiation 1964. 300 pages. \$9.50.

INTELLIGENT MACHINES: AN INTRODUCTION TO CYBERNETICS

By D. A. Bell 1962. 98 pages. Paper, \$1.45.

LABORATORY EXPERIMENTS IN COLLEGE PHYSICS, Third Edition

By C. H. Bernard 1964. 328 pages. Softbound, \$5.00.

HABITABLE PLANETS FOR MAN

By Stephen H. Dole 1964, 160 pages, \$5.75.

THE WORLD OF ELEMENTARY PARTICLES

By Kenneth W. Ford 1963, 262 pages. Paper, \$3.00.

BLAISDELL PUBLISHING COMPANY

A Division of Ginn and Company 135 West 50th Street New York, N.Y. 10020

Now Available Volume I: Mechanics of the Berkeley Physics Course

The first of a five volume package designed for a two-year elementary college physics course for students majoring in science and engineering. Developed by a distinguished committee of physicists, it reflects vigorously the revolutions in physics of the last hundred years. Authors of the first volume are: C. KITTEL and W. D. KNIGHT, both of the University of California, Berkeley; and M. A. RUDERMAN, New York University.

NEW APPROACH

develops in detail the consequences of the special theory of relativity.

emphasizes the motion of charged particles in electric and magnetic fields.

relates immediately to the experiments in the Berkeley Physics Laboratory. Part A is now available, with Parts B and C to follow.

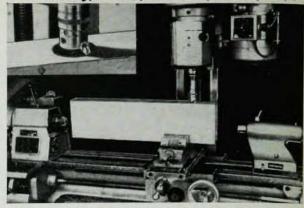
presents elementary mechanics so paths are seen leading to other parts of physics, astronomy, geophysics, chemistry and biophysics.

Available in September
Volume II: Electricity and Magnetism
by Edward Purcell, Harvard University

OTHER FORTHCOMING VOLUMES

VOLUME III: Waves and Oscillations VOLUME IV: Quantum Physics

VOLUME V: Statistical Physics


See these materials at the McGraw-Hill exhibit booth at the Spring A.P.S. meeting

McGRAW-HILL BOOK COMPANY

330 West 42nd Street New York, New York 10036

ACTION PHOTO OF A VERY UNUSUAL LATHE

Boring a 2-inch hole in a casting is an unusual task for a lathe, In this example, the job might strain an ordinary drill press, and it might pose a problem with some of the lighter styles of milling machines. But here the bore is cut accurately and quickly on a new Maximat, the most modern lathe in the world. This machine actually has two beds... one horizontal, and the other arranged perfectly vertical. On the Vertabed travels a second headstock complete with quill feed... thus the precision built into this tool room lathe bed is used to locate and feed work under the Vertabed. The combination of two machines in one gives you the advantage of a lot of performance in limited space, plus some very real time and cost saving economies. Write today for free literature:

(or)

AMERICAN EDELSTAAL INC.

Dept. R-D5, 350 Broadway New York 10013

CANADIAN EDELSTAAL

47 Granger Ave. Scarborough, Ontario, Canada

Materials problems? try MRC materials pharmacy

Vapor Deposition Materials

From aluminum through zirconium—zone refined in high vacuum to achieve high purity and keep gas content to a minimum. Special kits of various materials also available for research and development.

Cathodic Sputtering Electrodes

Fabricated to your size requirements from ultra high purity zone refined materials.

Custom Alloying and Fabrication

From grams to pounds of your specified alloy requirements at the desired purity levels.

We invite your inquiries.

Advanced Materials Division

MATERIALS RESEARCH CORPORATION

Orangeburg, New York 10962 (914) Elmwood 9-4200 lects the various accepted or plausible interpretations of cavitation and related phenomena and presents them in a very readable manner.

It should perhaps be pointed out again that Parts A and B of the first volume form one over-all entity. Some authors who contributed chapters to both parts occasionally refer the reader to Part A for fundamental details discussed there.

In general, the authors and the editor have succeeded in preparing a really outstanding work. Although many topics discussed do have immediate engineering applications, technical details are kept to a minimum and strong emphasis is placed on physical aspects. Appropriate mathematical formulations are included to such an extent that the reader can follow the derivations, and proofs are presented only where it appears essential. All chapters are extremely well documented with an abundance of useful, up-to-date references. Numerous good illustrations and tables contribute further to the high quality of the books.

This well-written and well-balanced work will undoubtedly become one of the excellent sources of information in the field of modern physical acoustics.

Strong Interactions and High Energy Physics, Summer School Proc. (Edinburgh, 1963). R. G. Moorhouse, ed. 475 pp. Plenum Press, New York, 1964. \$22.50. Reviewed by D. B. Lichtenberg, Indiana University.

This book is primarily concerned with dispersion relations and the analytic properties of the S matrix. As such, it is a successor to the book Dispersion Relations, edited by G. R. Screaton, containing the lectures given at the 1960 Scottish summer school. Comparing the two sets of lectures, one is impressed by the progress made in 3 years in the theory of dispersion relations. However, it is too early to say whether a study of analytic properties is the way to achieve quantitative predictions in strong-interaction physics.

Some of the 1963 lectures reflect solid but pedestrian advances over what was known and discussed in the lectures of 1960. Other lectures are on entirely new topics. My own opinion is that one of the most important new results is the treatment of the three-body problem by means of the Faddeev equations. Lovelace gives a good discussion of this subject, including information based on his own work.

Another new and important topic concerns Regge poles. Although at the time of the 1960 lectures Regge had already published his paper on analytic continuation in the complex angular momentum plane, the importance of this work was not then generally recognized. Thus, only in the 1964 volume do we find a discussion of Regge poles and cuts, with lectures on the theory by Oehme and on the applications by Udgaonkar. The discussion of the applications is highly speculative, and the relevance to high-energy physics has not been demonstrated.

A third new item is the discussion of "bootstraps" by Zachariasen. The hope of Zachariasen and others sharing his philosophy is that every strongly interacting particle can be constructed as a composite state of other particles. Such an all-embracing calculation is left for the future, however, and Zachariasen limits himself to a few limited calculations which give only fair agreement with experiment.

Other lectures include an introduction to dispersion relations by Squires, a discussion of applications by Hamilton, a treatment of the foundations of S-matrix theory by Barut, and a discussion by Martin of some consequences of unitarity and analyticity. Other lectures, not related quite as closely as the others to the theme of the book, are by Fubini on a model of very high-energy collisions (the so-called multiperipheral model) and by Blankenbecler on an approach to multichannel scattering.

The lectures are all given on an advanced level, suitable for postdoctoral theoretical physicists and for serious graduate students who are already familiar with aspects of the theory of analytic functions. I would recommend the book for such people were it not for the exorbitant price.

NEW BOOKS

- Elementary Particle and High Energy Physics, M. Levy and Ph. Meyer, eds. 1963 Lectures given at the Cargese Summer School of Theoretical Physics. 374 pp., paper \$7.95, cloth \$14.50
- Quantum Optics and Electronics, 1964 Les Houches Lectures edited by C. DeWitt, A Blandin and C. Cohen-Tannoudji. 600 pp., paper \$8.50, cloth \$10.50
- Group Theoretical Concepts and Methods in Elementary Particle Physics, Feza Gürsey, ed. Lectures of the Istanbul Summer School of Theoretical Physics. 425 pp. professional edition \$14.50, reference edition \$21.50
- Controlled Thermonuclear Reactions, L. A. Artsimovich, 400 pp. professional edition \$9.50, reference edition \$19.50
- Two Group Reactor Theory, J. L. Meem. 409 pp. Text edition \$12.50, reference edition \$20.50
- Group Theory and Solid State Physics I, Paul H. E. Meijer, ed. 320 pages, \$5.95. (International Science Review Series)
- Condensation and Evaporation of Solids, E. Rutner, P. Goldfinger and J. P. Hirth, eds., 707 pp., professional edition \$19.50, reference edition \$38.00
- An Atlas of Models of Crystal Surfaces, J. F. Nicholas, 225 pp., (9" x 12" format), \$22.50
- Light Scattering from Dilute Polymer Solutions, D. McIntyre and F. Gornick, eds., 340 pp., \$5.95 (International Science Review Series)
- Crystal Chemistry of Tetrahedral Structures, E. Parthe, 167 pp., \$9.50

FORTHCOMING BOOKS

- Dynamical Theory of Groups and Fields, Bryce S. DeWitt, 255 pp., paper \$1.95, cloth \$5.95. (Documents on Modern Physics Series)
- Rare Earth Research 3, LeRoy Eyring, ed. Proceedings of the Fourth Rare Earth Conference

GORDON AND BREACH

SCIENCE PUBLISHERS

B 150 Fifth Avenue New York 11