WKB Method, Dispersion Relations, Green's functions, and the evaluation of complex integrals typical of quantum field theory.

Unfortunately, this volume is not written to provide, by itself, a thorough grounding in any of the subjects it presents. Too many subjects are skimmed. Thus the reader may find steps missing in many explanations, mathematical manipulations, and the worked examples. Indeed, a large fraction of the subjects in this book are only introduced.

The physics departments of several universities known to this reviewer give lecture courses on mathematical methods of physics. In some of these courses there is a hurried coverage of a large number of topics. The various chapters in this book supplemented by classroom instruction could well serve as the basis for such a course. The clearly arranged and unusually large type reads well and would facilitate the students' studies. Other helpful features of the book are the unusually large number of illustrative worked examples and the many problems at the end of each chapter.

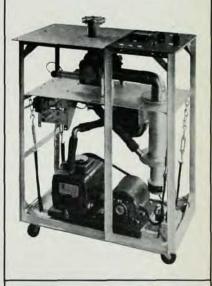
Introduction to Electronics. For Students of Physics and Engineering Science. By Donald M. Hunten. 384 pp. Holt, Rinehart, and Winston, Inc., New York, 1964. \$8.00.

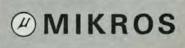
Electronics for Scientists. By H. V. Malmstadt, C. G. Enke, E. C. Toren, Jr. 631 pp. W. A. Benjamin, Inc., New York, 1962, \$11.00.

Reviewed by Melvin D. Daybell, New Mexico State University.

A physics student needing a knowledge of electronics has four alternatives open to him: he may take a sequence of electrical engineering courses, a special electronics course for science majors, a special electronics course for physics majors only, or he may study the subject independently. In many institutions, the first route, if not made impossible by an already overcrowded physics curriculum, is still extremely inefficient because of the overlap between electrical engineering courses and the physics courses which already form a part of the student's background. Until recently the physics major desiring to take one of the other three approaches was hampered by the lack of a suitable text, other than the excellent pretransistor works of Valley and Wallman, or Elmore and Sands, When Electronics for Scientists was reviewed in this section in March 1963, it was described as "the book" for the experimental scientist interested in electronics. Hunten's book is intended for a similar audience, and a discussion of the similarities and differences of the two books is indicated.

A course utilizing either of these texts should do several things. It should make maximum use of the student's background in physics and mathematics, stress the practical rather than the theoretical aspects of electronics, and make the student aware of the existence of the myriad devices and techniques of modern electronics while relegating many of the details of these devices and techniques to an adequate list of references. A brief review of elementary circuit theory should be included, along with a discussion of the properties of actual passive and active circuit elements. An attempt should be made to develop an intuitive familiarity with the operation of solid-state devices, especially transistors. A reasonable detailed treatment of the theory of active and passive ideal elements, linear amplifiers, feedback, and noise is also important. Various special techniques useful in different branches of physics should be covered in the text, even though all of them wouldn't be included in every course using the text. Examples might be oscilloscope operation, phase-sensitive amplifier techniques, pulse and digital circuitry, dc amplifiers, radio-frequency and microwave techniques, photosensitive devices, instrument and servo motors, etc. It should be possible for the student to read senior and graduate level electrical engineering texts after completion of the course.


Both of the books under review are quite well written, and either would provide an excellent text for a course of the above type, although the level of the course taught from Hunten's book would be considerably higher than that taught from Malmstadt, Enke, and Toren. Introduction to Electronics assumes (and uses) a


just what the doctors order

(Ph. D.'s, that is)

This is the Mikros PS-10-the versatile, low-cost switch-operated pumping system which is proving to be an invaluable tool for electronics, school and research labs. And no wonder-since this is the area for which it was specifically designed. Consider these brief facts. Operating range-5 x 10-6 Torr without cold trap. Electric motor-driven valves. 1 x 10-1 Torr to 1 x 10-4 Torr Pirani Gauge. Air-cooled, protected diffusion pump. Self-contained, portable, no cooling water required-just plug it in anywhere and it's ready to go. Ideal for the solution of difficult and variable vacuum problemsavailable also with a wide range of versatile, optional equipment, including cold trap, discharge and ionization gauges, base plate assembly for use as a vacuum evaporator. Send for descriptive literature, complete information.

> \$1495.00 f.o.b. Portland, Oregon Availability 15 days

DIVISION W VARIAN ASSOCIATES
7634 S.W. CAPITOL HIGHWAY
PORTLAND, OREGON 97219
PHONE (AC 503) 246-5494

vapor pressure accurately!

FUSED QUARTZ

precision
pressure
gage

- high resolution to 1 micron
- wider ranges = to 500 psi
- for high temperature to 1000° F
- for cryogenic applications — liquid He, O₂, N₂, etc.
- for corrosive applications — chlorine, bromine, etc.

TI Precision Pressure Gages are faster, easier to use — available for table top or relay rack mounting in manual or servonulling models.

Fused quartz Precision Gages, Controllers and Systems are unexcelled in any application requiring precise measurement and control of pressure.

Write for Bulletin S-141-3

background in electricity and magnetism and calculus, is oriented toward the physicist, and consequently is able to use its fewer pages to reach a higher level of sophistication than the other text. Students without this background will need extra introductory material, especially if they have had little contact with electronic instruments in their undergraduate laboratory work. Electronics for Scientists is an excellent source for this material. It should be possible to trouble shoot many of the more common electronic instruments after having finished Hunten's book. The student using Malmstadt, Enke, and Toren, on the other hand, will find that many of the circuit types are discussed only in their simplest form, while most practical circuits have a profusion of extra components tucked in here and there that often confuse the uninitiated.

More material on the transistor and other solid-state devices would be welcome in both texts, and appendices on transistor equivalent circuits and nomenclature would also be quite helpful. If Professor Hunten would include a chapter on the transistor in his book that was as beautifully clear and informative as his chapter on feedback, he would measureably enhance the value of an already excellent work. His book mentions many tricks of the trade, and brings the reader much closer to current electronic practice than the other text, primarily because it doesn't need to provide as much background material.

Neither book says enough about the limitations imposed on a circuit by the high-frequency cutoff characteristics of vacuum tubes and transistors, but then these limitations are more important in circuit design than they are in understanding and using existing instruments. A brief review of the present frequency, noise level, time resolution, and power capabilities of the various active electronic elements would be valuable in both books, possibly in an appendix. A problem that seems to bother most students is how to go about calculating the performance of an apparently complicated circuit, for example, a straightforward multistage amplifier without feedback but with perhaps a differential stage, bypass and coupling capacitors, etc. As a result, worked-out examples indicating how some components can be ignored and how equivalent circuits can be used to their best advantage would be an improvement in either book.

Aside from the difference in level of sophistication, there is one basic difference separating Electronics for Scientists from Introduction to Electronics. Electronics for Scientists is arranged in such a way that a complete system of laboratory equipment and breadboard components marketed by Heathkit may be used as an integral part of the course. This equipment has been carefully thought out and tested, and is an invaluable addition to the course. It also would be a major item in the budget of many institutions. For a nonlaboratory version of the course, the extra material can easily be omitted. Introduction to Electronics gives only an outline of a suitable sequence of experiments in a short appendix

Neither of the books reviewed treats microwave techniques, nor do they bring the reader quite up to the level where he may read electrical engineering texts easily. The primary extension needed to satisfy the latter requirement is a treatment of the application of Laplace transforms to electronic circuits. Practice in dealing with more complicated circuits would also be helpful. Judicious reading in the excellent references listed in either text could provide this extra material. A book in the spirit of the ones under review but bridging the gap between these books and current professional electronics texts has yet to be written. It should be.

Incompressible Fluid Dynamics, By J. N. Hunt. 127 pp. Wiley, New York, 1964. Paper 84.00.

Reviewed by Allen I. Ormsbee, University

of Illinois.

This is an excellent book. In presenting a second level text in incompressible viscous flow theory, the author leads the reader from the derivation of the Navier-Stokes equations through low Reynolds number flows, laminar steady and nonsteady boundary layers, hydrodynamic instability, and turbulence and turbulent shear flows.

The writing is straightforward and concise—the author does not make the mistake of trying to prettify what are, in many cases, standard developments. The three chapters on laminar boundary layers are particularly well done. The discussion of hydrodynamic stability is a welcome addition to a text at this level, and the author succeeds in introducing turbulence without confounding the student while holding arm waving to a minimum.

The chapters are followed by homework problems which amplify and often extend the text material.

Relativistic Quantum Mechanics. By James D. Bjorken and Sidney D. Drell. 300 pp. McGraw-Hill, New York, 1964. \$11.50.

Reviewed by J. E. Mansfield, Harvard University.

An extended text on Feynman methods has been too long in coming. This one, the first of two volumes, fills this need well and should see wide acceptance.

The program is the development of a propagator theory for particles of spins 0, 1/2, 1. Feynman rules are developed from a particle-wave equation and Huygens' principle, integrated with appropriate boundary conditions (hole-theory boundary conditions for the Dirac equation). Various couplings are developed heuristically; we are promised a full treatment of invariant couplings in the second volume.

From this point on, the book is mostly a description of calculation with Feynman rules. A large number of problems is treated in a small book. Quantum electrodynamics takes up the first two-thirds, and meson theory and beta decay the last third. The treatment is pedagogically good, with a large section on trace theorems and the like.

In keeping with the division of labor between this book and the one to follow, the renormalization program is defined and implemented, but finiteness in perturbation theory is not treated. This treatment is not as well unified as one might like. The renormalization difficulties are confronted successively as they come up

Interpretation by William Thonson

The Dynamic Radiography of Explosively Driven Metals PROBLEM: The application of a pulsed radiation beam produced by a high current electron accelerator (PHERMEX) to the studies of the dynamic behavior and properties of matter in the severe environment of explosive detonations, where pressures may be measured in megabars. The radiographic diagnosis of shock wave interactions in metals, as well as features of the detonation waves in the explosive driving charges are of particular interest. The significance of such parameters as tensile strength and viscosity, in the high-speed dynamic realm, is sought. The formation, progress and effects of metallic jets are observed and studied.

Qualified applicants interested in research at Los Alamos are invited to send resumes to: Director of Personnel Division 65-39

alamos

SCIENTIFIC LABORATORY
OF THE UNIVERSITY OF CALIFORNIA
LOS ALAMOS, NEW MEXICO.

An equal opportunity employer, United States Citizenship required.