RESEARCH FACILITIES AND PROGRAMS

200-BeV machine-design study

The Atomic Energy Commission has published a preliminary design study for the proposed 200-billion-electron-volt proton accelerator. Although the study was done at the Lawrence Radiation Laboratory, the designers had no specific site in mind, and their determinations are billed as applicable to any location.

The accelerator would be a strongfocusing proton, synchrotron providing 3 × 10¹³ protons per pulse at a maximum rate of 30 cycles a minute. It would be 0.86 miles in diameter, lie under 25 ft or more of earth shielding, and have along its circumference several areas for externalbeam and internal-target experiments.

The protons would begin their journey in a Cockcroft-Walton preinjector, which would bring them to an energy of 750 keV. They would then go on to an Alvarez-type linear accelerator and be raised to 200 MeV. The last injection stage would be an 8-BeV rapid-cycling synchrotron, which would be inside the main circle. At 8-BeV seven successive pulses would be transferred to the main synchrotron in 1/3 sec and stored in orbits around its circumference. When the main ring was filled, all the protons would be accelerated to maximum energy.

The main ring would have twelve long straight sections, two of which would provide opportunities for beam extraction and the use of external targets. One straight section would be for internal targets. According to the authors of the study, planning for extracted beams before construction is a new departure; at other accelerators they have been developed after operation has begun.

Because of the high beam intensity special precautions against radioactivity are planned. Radiation-resistant materials are called for, and, whenever possible, components would be located outside the high-radiation areas of the accelerator.

Total cost of construction is estimated at \$347,960,000. The accelerator is expected to be completed six and a half years after authorization. The total staff when the machine is operating will be the equivalent of 2472 full-time workers; the annual budget is estimated at \$58.7 million.

The full study is two volumes at \$10; a 25-page summary is available for \$2. Both can be ordered from the Clearinghouse for Federal Scientific and Technical Information, NBS, Springfield, Va.

In another development, the AEC referred 85 site proposals to the National Academy of Sciences for evaluation. Originally 126 locations in 46 states were proposed. Sites in 43 states are still under consideration; North Dakota, South Dakota, and Wyoming have been eliminated. Alaska, Hawaii, Montana, and Vermont did not submit proposals. In view of the large number of sites still in the running, the AEC now feels that it may not be possible to make a final decision by the end of the year as it originally hoped to do.

Organics from chondrites

Organic compounds that come from outer space in meteorites are probably relics of a primordial gas phase, con-Martin Studier (Argonne National Laboratory), Ryoichi Havatsu, and Edward Anders (both of the University of Chicago). Moreover the gas phase was probably the solar nebula, and during planetary evolution the organics were probably formed under conditions of thermodynamic equilibrium. Thus the idea that such substances indicate extraterrestrial biology, already abandoned by most scientists, is further discredited.

With experiments reported in a recent issue of *Science* [149, 1455 (1965)] Studier and his collaborators examined the distribution of compounds in samples of three carbonaceous chondrites, which, like all meteorites, probably come from asteriods. Their technique was to put samples into a liquid-nitrogen-cooled

tube, pump away the gases around them, and then, with time-of-flight mass spectrometry, study the evolution of gases trapped inside the samples. Uncondensed gases were examined and pumped away. Afterward the temperature was allowed to rise so that condensed vapors could be drawn off and examined in turn.

The distribution that they find convinces them that the origin was a primordial gas phase, and, by eliminating other possibilities for that phase, they conclude that it was the solar nebula. Just what the course of development was is not obvious, but Studier, Havatsu, and Anders draw a tentative picture: at some early stage some unknown, mass-dependent fractionation took away hydrogen and helium; remaining carbon, hydrogen, and oxygen, which were in an asphalt ratio, were heated and then cooled to form a broad spectrum of organics; these were caught in dust grains that crystallized and grew into asteroids, comets, and planets. Meanwhile solar radiation broke up some of the original organic molecules to make smaller ones.

The hypothesis accounts for all organics identified so far: further calculations will show whether it can account for all organics in all meteorites. If it will not, one may have to turn once again to the postulate of biological activity.

Canadian radiotelescope

The Canadian National Research Council is constructing a 150-ft paraboloid radiotelescope at the Algonquin Radio Observatory in Lake Traverse, Ont. The instrument is expected to be complete by February 1966. The observatory, which is equipped with interferometers and smaller dishes, is located in Algonquin Park, a large provincial reserve about 150 miles porthwest of Ottawa.

The new reflector will be faced in solid steel plate over the inner 120 ft of its diameter: the remainder will be wire mesh. It is designed for both Accuracy ±0.0025%. Maximum meter resolution, 0.1 ppm. Fourteen pounds later you have the new solid-state Fluke 885 DC Differential Voltmeter, the first truly portable laboratory standard. Peak-to-peak reference stability is 15 ppm for 60 days. Use the Fluke 885 as an isolation amplifier. Grounded recorder output is so well isolated that a short-circuit at the output produces no voltmeter reading error. Ground loops are completely eliminated when the battery powered Model 885AB is used.

Other Specifications: Range, 0 to 1100 Volts. Null sensitivity, 100 microvolts full scale. Line regulation better than 2 ppm.

No zener oven, less than 30 seconds warm-up time.

Cabinets can be half rack or full rack mounted with optional mounting kits.

Price of the Model 885A line cord version is \$1,195.

The battery powered Model 885AB is \$1,325.

FLUKE • Box 7428 • Seattle, Washington 98133 • Phone: (206) PR 6-1171 • TWX: (910) 449-2850

prime-focus operation at wavelengths greater than 10 cm and the radiofrequency equivalent of a Gregorian optical system at shorter wavelengths. The Gregorian system employs an elliptical mirror, which is hung so that one of its focuses coincides with the prime focus of the reflector and the other is located at the center of the reflector where a feed horn picks up the focused radiation. In contrast to a Cassegrainian system, the secondary mirror of a Gregorian system can be hung far enough from the prime focus of the primary mirror so as not to interfere with receiving equipment placed there for study of long-wavelength signals.

The telescope will have a 3.5-seconds-of-arc beamwidth at 3-cm wavelength with a gain of 70 db. It will be moved by a computer-controlled servomechanism and have a pointing accuracy of 30 seconds of arc while moving and 10 seconds of arc while standing still.

Research will include study of small-wavelength spectra of radio sources, polarization measurements, and a search for sharp spectral lines.

NBS force calibration

The National Bureau of Standards has begun to use three new deadweight force-calibration machines at its Engineering Mechanics Laboratory in Gaithersburg, Md. The machines have capacities of one million, 300 000, and 112 000 pounds. Loads can be applied in tension or compression with an uncertainty of 0.002 percent. Previously the load limit of the largest NBS deadweight machine was 111 000 pounds. The new machines have reduced the time required to calibrate one-million-pound force-measuring devices by almost half and provide accuracies 10 to 50 times as great as were previously possible.

The machines are used primarily to calibrate reference standards for force-device manufacturers and standards laboratories. In special cases, for example the devices used to measure the thrust of rocket engines, secondary standards are dispensed with, and the Bureau calibrates the actual measuring devices directly.

Each of the machines is several

storeys tall. At the bottom of each is a stack of fractional weights, which are linked to each other. The uppermost weight is attached to a "loading frame", which in turn is linked to a "lifting frame" by the device under test. The lifting frame is raised by a hydraulic jack and exerts tension or compression on the test device. Lifting continues until the desired number of weights is lifted from the foundation and the condition of the test device represents a known force.

Solar eclipse 1966

The Federal Council on Science and Technology has designated the National Science Foundation as coordinating agency for United States observations of the total solar eclipse of November 12, 1966, in South America. Robert Fleischer has been appointed coordinator, and all United States scientists, whether or not members of a federal agency, are invited to make their plans known to him as early as possible, preferably no later than January 1, 1966. It is hoped that requests for assistance from South American governments and institutions will be made through the coordinator in a unified way to insure their consistency with each other and with the plans of South American scientists. Dr. Fleischer can be addressed at the National Science Foundation, Washington, D. C. 20550.

Radiation chemistry data center

A Radiation Chemistry Data Center has been established at the University of Notre Dame to compile, evaluate, store, and disseminate data on chemical reactions brought about by ionizing radiation. The Center is jointly sponsored by the Atomic Energy Commission and the National Bureau of Standards and will form a component of the National Standard Reference Data System. Initially attention will be devoted to chemical reaction yields, effects on physical properties, and specific rates of elementary processes. Milton Burton, director of the Notre Dame Radiation Laboratory, will direct the Center, which will be located in the radiation-research building on the campus. Inquiries

may be addressed to the Radiation Chemistry Data Center, Radiation Laboratory, University of Notre Dame, Notre Dame, Ind.

Space telescopes

The National Aeronautics and Space Administration has awarded a contract for more than \$175,000 to the Perkin-Elmer Corporation to cover preliminary design of a large optical telescope for a manned or unmanned space station.

The technique to be used is known as "active optics" and enables formation of a large diffraction-limited mirror by positioning and automatically aligning several individual optical segments. At first Perkin-Elmer will develop equipment for aligning the segments and fabricate a scaled-down spherical segmented mirror. If work under the present contract proves successful, construction and launching of space telescopes with mirror diameters of 100 inches or more will be considered.

Space research at Denver

The National Aeronautics and Space Administration has approved a \$900 000 grant to the University of Denver for construction of a building to house space-related research. The new Space Sciences Laboratories will be a three-storey structure containing about 38 000 sq ft of floor space. Current projects include investigation of electromagnetic propagation, synthesis of rocket fuels, effect of interplanetary fields on cosmic radiation, and infrared absorption by the upper atmosphere.

West Texas research center

The Killgore Research Center of West Texas State University (Canyon, Texas) began operation on September 1. A 22 600-sq-ft building is under construction at a cost of \$450 000 provided by the Killgore Foundation of Amarillo. Initial groups have programs in biology, mathematics, biochemistry, and low-temperature physics. (The University is located in a helium-producing region.) Alfred A. Kraus, Jr., is director of the Center.