transport problems: neutrons, nonlinear radiation, fast charged particles, and percolation. The idea of selfavoiding random walks is central in two papers, on polymer statistics and on the Ising problem. Of course one great difficulty of Monte Carlo methods for problems with many degrees of freedom is that of attrition, and considerable interest attaches to the various devices for getting round it. The "enrichment" technique for studying polymer chains, as reported in this volume by Wall, Windwer. and Gans, is fairly typical of these devices; and typical also in that the validity of the sampling method still awaits justification.

It is interesting that about half of the work reported was executed on IBM 704, some on the old Illiac. and one job on Mercury. Only two of the authors used IBM 7090. This reflects the current rate of advance of the technical possibilities of computers. The time lag between research work and its appearance in a survey article can rarely be less than two years, and that is about the present duration of a stage in the development of computing equipment. However, this does not detract in any way from the value of the survey. Indeed it is a stimulating challenge to be shown how much was done with the equipment of two years ago; and the extensions and developments made possible by the latest machines rise temptingly to mind.

The book is strongly recommended as a valuable source, of ideas as well as of information, for those about to embark on the use of Monte Carlo methods or who are wondering whether or not they should do so.

Biotechnology: Concepts and Applications. By Lawrence J. Fogel. 826 pp. Prentice-Hall, Inc., Englewood Cliffs, N. J., 1963. \$22.00. Reviewed by Joseph G. Hoffman, Uni-

versity of Buffalo.

Biotechnology is a relatively new subject known also as Human Engineering or Industrial Psychology or Systems Engineering. It deals with the man-machine relationship. In Chapter 20 is given a schematic sketch of the structure of biotechnology in which I counted at least thirty of the major disciplines involved, such as: psychology, philology, information theory, mathematics, anthropology, biology, etc. My preference is to call it Human Engineering because the prefix bio carries the connotation of all living things, not merely man. But then, the word Biotechnology was probably made up by engineers not necessarily imbued with the classic concepts of biosciences.

Section A has two chapters on mathematical models, in which the heading called Probability and Strategy intrigued me. Yet, in its five pages of general discussion I found little satisfaction about the meaning of Strategy in the heading. Section B has six chapters on human information input channels which are visual, auditory, position and motion sensing, somatic, taste, and smell. The reader is presented with a quick sketch of the histologic structure of the sensors and mode of information they send to headquarters. This makes for a wonderfully concise description of mighty complex devices. The reader should be very cautious, however; even the author uses the word "probably" in a number of his descriptions.

Having read this overview of the input senses I was anxious to see Section B on Decision Making because in the third of its three chapters were headings on Evolution of Intellect, Residence of Intellect, and Human Memory. Here is a good description of man's brain (49 ounces in male, 44 in female) with diagrams. But there is no more than one finds in typical anatomy, or in psychology texts. There are not even references to current biophysical theories of memory.

Having followed the information from the input channels to the brain, the next step is to describe, in Section D, the Human Information Output channels. This is given in the responses of the skin's galvanism, heart, brain, muscle, and other organs. The remaining six chapters then discuss Machine and System Design. These latter chapters contain the essential materials of the book. For example, Chapter 15 on Design of the Immediate Environment tells how to protect against variable acceleration and against nuclear radiations. The

appendix to this chapter gives nine unbelievable case histories of human beings who jumped out of windows at great heights. One lady sat up and wanted to get right back to the seventeenth floor whence she had jumped and broken two legs and an arm.

Although the author does not tell you more than you already know about the human intellect and its associated memory, he does give a good perspective of human engineering problems. His style is good, especially when he gives an engineer's presentation of the problems he poses. The format is good. There is a table of contents; a subject and a name index; and the figures and tables generously supplement the text.

The Scientific Papers of Sir Geoffrey Ingram Taylor. Vol. 3, Aerodynamics and the Mechanics of Projectiles and Explosions. Edited by G. K. Batchelor. 571 pp. Cambridge University Press, 1963. \$17.50. Reviewed by R. E. Street, University of Washington.

G. I. Taylor needs no introduction to students of fluid mechanics, who must have read one or more of his papers at some time in their careers. In this volume we have 58 of these papers, published over the period from 1910 to 1957; there were 45 papers in Volume 2 and more are promised in Volume 4. While Volume 2 contained the papers on turbulence together with the more or less related ones on meteorology and oceanography, Volume 3 contains the papers on aerodynamics, especially compressible flow. The first paper in this volume is on the propagation of a shock wave, followed by many more on compressibility, in particular the two, published jointly with J. W. Maccoll, on the supersonic flow around a cone and the papers on blast waves due to very intense explosions. Actually, starting in 1939 and continuing on to 1950, Taylor published 18 papers on explosions, their associated shock waves and pressure effects, which indicate his principal interest during the war. During this same time period he was also publishing papers on other problems in aerodynamics, which are included here, as only a man of Taylor's genius could do.

None of Taylor's papers are trivial,