PHYSICAL CONSTANTS

As Recommended by the NAS-NRC

A new, consistent set of values for the physical constants has been recommended by the Committee on Fundamental Constants of the National Academy of Sciences—National Research Council. These values were presented to the Second International Conference on Nuclidic Masses held in Vienna, July 15-19, 1963. At the General Assembly meeting of the International Union of Pure and Applied Physics held in Warsaw, September 18-23, 1963, the following statement was adopted: "The Commission [on Nuclidic Masses and Related Atomic Con-

stants] expects that these values will be widely used and will help to remove many of the confusions that have arisen from the use of differing sets of constants. In addition, it is expected that the appearance of this list will encourage further experimental work aimed at improving our knowledge of these values."

The NAS-NRC Committee consulted a large number of experimental results, and it rejected some of them because of inconsistency with other data and apparent lack of reliability. The Committee remarked that if the rejected data had been included the reported values would have been altered somewhat, but not greatly.

A full report of the calculations and considerations entering into the new set of values was presented by J. W. M. DuMond and E. R. Cohen at the Vienna Conference, and will be published in the conference proceedings. The new values have been reported in the October 1963 issue of the National Bureau of Standards Technical News Bulletin.*

Table 1 lists defined values and equivalents, and Table 2 contains energy conversion factors. The new values of the constants are given in Table 3. The data retained for least-squares' adjustment were assigned standard deviations, and the estimated error limit is three standard errors. It

* A wallet-size card giving recommended values of selected constants can be obtained, upon request, from the Office of Technical Information, National Bureau of Standards, Washington, D.C., 20234.

Table 1. Defined values and equivalents

Meter	(m)	1 650 763.73 wavelengths in vacuo of the unperturbed transition $2p_{10}-5d_5$ in $^{86}{\rm Kr}$
Kilogram	(kg)	mass of the international kilogram at Sèvres, France
Second	(s)	1/31 556 925.974 7 of the tropical year at 12h ET, 0 January 1900
Degree Kelvin		defined in the thermodynamic scale by assigning 273.16 °K to the triple point of water (freezing point, 273.15 °K = 0 °C)
Unified atomic mass unit	(u)	1/12 the mass of an atom of the 12C nuclide
Mole	(mol)	amount of substance containing same number of atoms as 12g of pure 12C
Standard acceleration of free fall	(gn)	9.806 65 m s ⁻² , 980.665 cm s ⁻²
Normal atmospheric pressure	(atm)	101 325 N m ⁻² , 1 013 250 dyn cm ⁻²
Thermochemical calorie	(calth)	4.1840 J, 4.1840×10 ⁷ erg
International Steam Table calorie	(cal _{IT})	4.1868 J, 4.1868×10 ⁷ erg
Liter	(1)	0.001 000 028 m³, 1 000.028 cm³ (recommended by CIPM, 1950)
Inch	(in.)	0.0254 m, 2.54 cm
Pound (avdp.)	(lb)	0.453 592 37 kg, 453.592 37 g

Table 2. Energy conversion factors

	Formula	Factor	Error limit	Conversion			
				Système International (MKSA)		Centimeter-gram-second (CGS)	
Electron-volt Energy associated with	eV	1.60210	7	$\times 10^{-19}$	$J(eV)^{-1}$	×10 ⁻¹²	erg (eV)-1
Unified atomic mass unit	c^2/Ne	9.31478	15	108	$eV u^{-1}$	108	eV u ^{−1}
Proton mass	$m_p c^2/e$	9.38256	15	108	$eV m_p^{-1}$	108	eV m _p −1
Neutron mass	$m_n c^2/e$	9.39550	15	108	$eV m_n^{-1}$	108	eV m _n −1
Electron mass	$m_e c^2/\epsilon$	5.11006	5	105	$eV m_e^{-1}$	105	eV me-1
Cycle	e/h	2.41804	7	1014	$Hz(eV)^{-1}$	1014	s-1(eV)-1
Wavelength	ch/e	1.23981	4	10-6	eV m	10-4	eV cm
Wave number	e/ch	8.06573	23	105	$m^{-1}(eV)^{-1}$	103	cm ⁻¹ (eV)-1
°K,	e/k	1.16049	16	104	°K(eV)⁻¹	104	°K(eV)-1

is believed unlikely that the true value of any of the constants differs from the tabular value by as much as the stated uncertainty. The uncertainties in constants computed from fundamental ones may be either greater or less than is obtained by a simple combination of the elemental uncertainties because of the correlation among the elemental constants introduced by

the least-squares adjustment. The values are based upon the assumption that the acceleration of gravity is correctly given by adding -0.013 gal (1 gal = 1 cm s⁻²) to the value of g given in the Potsdam system. The system of atomic masses in which ¹²C is assigned the value 12, is employed. The symbols used are those recommended by the Commission on Sym-

bols, Units, and Nomenclature (SUN Commission) of IUPAP. (See Physics Today, June 1962.)

The members of the NAS-NRC Committee on Fundamental Constants, are J. A. Bearden, E. R. Cohen, J. W. M. DuMond, L. P. McCullough, N. Ramsey, F. D. Rossini, J. S. Thomsen, G. Waddington, and Alvin G. McNish, Chairman.

Table 3. Adjusted values of constants

Table 5. Aujusted values of C	onstants.		F. t. t	Unit				
Constant S	ymbol	Value	Est. ‡ error limit	Système International (MKSA)		Centimeter-gram-second (CGS)		
Speed of light in vacuum	с	2.997925	3	$\times 10^{8}$	m s-1	×1010	cm s ⁻¹	
Elementary charge	e	1.60210	7	10-19	C	10-20	cm ^{1/2} g ^{1/2} *	
Avogadro constant	λ7 .	4.80298 6.02252	20 .	1023	mol ⁻¹	10^{-10} 10^{23}	cm ^{3/2} g ^{1/2} s ⁻¹ † mol ⁻¹	
Electron rest mass		9.1091	4	10-31	kg	10-28	g	
	···e	5.48597	9	10-4	u	10-4	u u	
Proton rest mass	m_p	1.67252 1.00727663	8 24	10^{-27} 10^{0}	kg u	10^{-24} 10^{9}	g u	
Neutron rest mass	m_n	1.67482 1.0086654	8	10^{-27} 10^{0}	kg	10^{-24} 10^{0}	g	
Faraday constant	F	9.64870	13 16	104	u C mol ⁻¹	103	u cm ^{1/2} g ^{1/2} mol ⁻¹ *	
amusing constants	**	2.89261	-		C moi	4.014	cm ^{3/2} g ^{1/2} s ⁻¹ mol ⁻¹ †	
Planck constant	h	6.6256	5	10-34	Js	10-27	erg s	
	ħ	1.05450	7	10-34	Js	10-27	erg s	
Fine structure constant		7.29720	10	10-3		4.09		
	$1/\alpha$ $\alpha/2\pi$	1.370388 1.161385	19 16	$\frac{10^2}{10^{-3}}$		40-2		
	α^2	5.32492	14	10-5		10-5		
Charge to mass ratio for electron	e/me	1.758796	19	1011	C kg ⁻¹	107	cm ^{1/2} g ^{-1/2} *	
		5.27274					cm ^{3/2} g ^{-1/2} s ⁻¹ †	
Quantum-charge ratio	h/e	4.13556 1.37947	12	10 -15	J s C ⁻¹	10^{-7} 10^{-17}	$cm^{3/2}g^{1/2}s^{-1}* cm^{1/2}g^{1/2}\dagger$	
Compton wavelength of electron		2.42621	6	10-12	m	10-10	cm	
6 1 1 5	$\lambda_C/2\pi$	3.86144	9	10-13	m	10-11	cm	
Compton wavelength of proton	$\lambda_{C, p}$ $\lambda_{C, p}/2$	1.32140 2.10307	4	10 ⁻¹⁵ 10 ⁻¹⁶	m m	10 ⁻¹³ 10 ⁻¹⁴	cm cm	
Rydberg constant		1.0973731	3	107	m ⁻¹	105	cm ⁻¹	
Bohr radius	700	5.29167	7	10-11	m	10-9	cm	
Electron radius		2.81777	11	10-15	m	10-13	cm	
	r2.	7.9398	6	10-30	m ²	10^{-26}	cm ²	
Thomson cross section	$8\pi r_{e}^{2}/3$	6.6516	5	10^{-29}	m ²	10^{-25}	cm ²	
Gyromagnetic ratio of proton	γ	2.67519	2	10^{8}	rad s-1T-1	104	rad s-1G-1 *	
	$\gamma/2\pi$	4.25770	3	107	Hz T ⁻¹	103	s-1G-1 *	
(uncorrected for diamagnetism, H ₂ O)	γ'	2.67512	2	10s	rad s ⁻¹ T ⁻¹	104	rad s-1G-1 *	
	$\gamma'/2\pi$	4.25759	3	107	Hz T-1	10^{3}	s-1G-1 *	
Bohr magneton	μ_B	9.2732	6	10-24	J T-1	10-21	erg G ⁻¹ *	
Nuclear magneton		5.0505	4	10-27	J T-1	10-24	erg G ⁻¹ *	
Proton moment		1.41049 2.79276	13	$\frac{10^{-26}}{10^{0}}$	J T-1	10 ⁻²³ 10 ⁰	erg G ⁻¹ *	
(uncorrected for diamagnetism,	μ_p/μ_N μ'_p/μ_N	2.79268	7	100		400		
Anomalous electron moment corrn	$(\mu_{c}/\mu_{0}) - 1$	1.159615	15	10-3		10-3		
Zeeman splitting constant		4.66858	4	101	$m^{-1}T^{-1}$	10-5	cm ⁻¹ G ⁻¹ *	
Gas constant	22.0	8.3143	12	10°	J °K -1 mol-1	107	erg °K-1 mol-1	
Normal volume perfect gas		2.24136	30	10^{-2}	m³ mol-1	10^{4}	cm³ mol-1	
Boltzmann constant		1.38054	18	10-23	J °K⁻¹	10-16	erg °K-1	
First radiation constant (2πhc²)		3.7405	3	10-16	W m ²	10-5	erg cm ² s ⁻¹	
Second radiation constant		1.43879	19	10-2	m °K	100	cm °K	
Wien displacement constant		2.8978	4	10-3	m °K	10-1	cm °K	
Stefan-Boltzmann constant		5.6697	29	10-8	W m ⁻² °K ⁻⁴	10-5	erg cm ⁻² s ⁻¹ °K ⁻⁴	
Gravitational constant	13.42	6.670	15	10-11	N m ² kg ⁻²	10-8	dyn cm² g ⁻²	

‡Based on 3 standard deviations, applied to last digits in preceding column. *Electromagnetic system. †Electrostatic system. C—coulomb J—joule Hz—hertz W—watt N—newton T—tesla G—gauss