OBITUARIES

Herman Yagoda

Herman Yagoda, a cosmic-ray physicist, died on June 13 in an automobile accident in Bedford, Massachusetts. Mr. Yagoda was a staff member of the Air Force Cambridge Research Laboratories at Hanscom Field in Bedford. Last year the Laboratories awarded him the Guenter Loeser Memorial Award in recognition of his contributions to cosmic-ray research.

Mr. Yagoda was born 51 years ago in New York City. He was graduated cum laude in 1929 from Cooper Union and received his master's degree, in 1931, from New York University. He spent the next four years as a chemist with the Fales Chemical Company, and, in 1935, joined the staff of Columbia as a Baker research fellow, where he pursued doctoral studies. He became an assistant chemist with the US Customs Laboratory in New York in 1936 and remained there for five years. From 1942 to 1958 he worked at the National Institutes of Health, progressing from associate chemist to senior chemist. There he was engaged in research dealing with the biological aspects of cosmic radiation hazards to manned flight in regions above the earth's atmosphere.

In 1958 he joined the staff of the

AFCRL as a physicist. His work at the Laboratories involved the use of rockets and satellites to detect cosmic rays from above the earth's atmosphere. An early satellite recovered after orbit carried one of Mr. Yagoda's cosmic-ray detectors, consisting of photographic emulsion plates. Though he was especially well known during his career for research involving tracks of ionizing particles in photographic emulsion, Mr. Yagoda also contributed to research in radioactivity and high-energy nuclear physics.

He was a fellow of the American Physical Society and the American Mineralogical Society and a member of the American Geophysical Union. He also served on the Bioastronautics Panel and the Space Science Board of the National Academy of Sciences.

Robert W. Gelinas

Robert W. Gelinas, research physicist in the Electronics Department of the RAND Corporation in Santa Monica, Calif., died on July 25 at the age of 41.

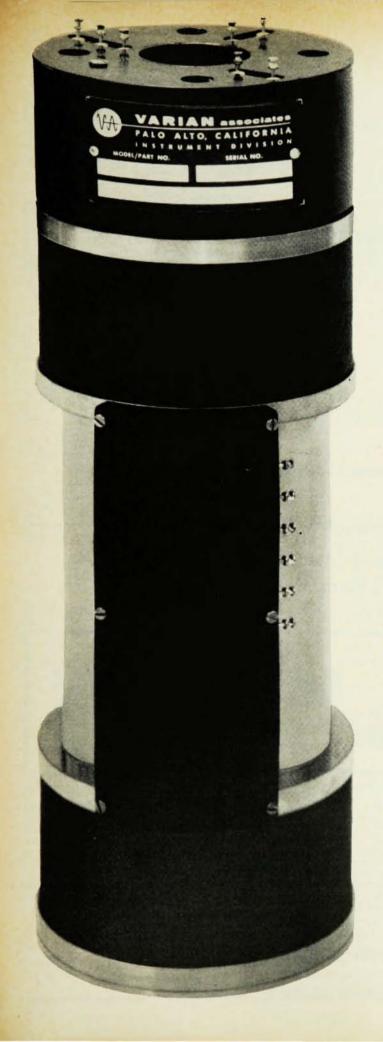
Dr. Gelinas was born in Washington, D.C. He received a bachelor of engineering degree at Johns Hopkins University in 1943 and a PhD in physics in 1952. He spent the next four years at Johns Hopkins, first as a research associate in the University's Institute for Co-operative Research and later in the Johns Hopkins radiation laboratory.

In 1956 he joined the staff of the RAND Corporation, where his principal interests were infrared radiation and its military applications. He was well known for his analyses of difficult radiation and detection problems.

Dr. Gelinas was a member of the American Physical Society and the American Association of Physics Teachers.

John W. Calkin

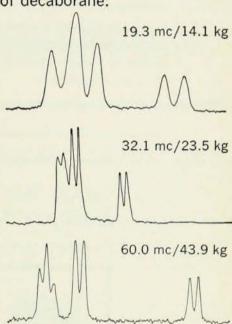
John W. Calkin, senior mathematician and chairman of the Applied Mathematics Department at Brookhaven National Laboratory, died in Westhampton, N.Y., on August 5 at the age of 54.


A native of New Rochelle, N.Y., he was graduated with honors in mathematics from Columbia University in 1933. He was awarded his MA in 1934 and his PhD in 1937 by Harvard University. While at Harvard, Dr. Calkin was a Shattuck Fellow and received the Bowdoin Prize.

In the fall of 1937, Dr. Calkin went to the Institute for Advanced Study in Princeton on a year's fellowship to work with Oswald Veblen and John von Neumann. He later served as an assistant professor at the University of New Hampshire and the Illinois Institute of Technology in Chicago. During this period, Dr. Calkin published a number of papers on operator theory and its application to partial differential equations. Some of this work has since become quite fundamental to further developments in the field.

During World War II, Dr. Calkin worked on a National Defense Research Committee Project in the field

Herman Yagoda



SUPERCONDUCTING SOLENOID FOR NMR

□ Varian has a new superconducting magnet that offers interesting possibilities for wideline NMR spectroscopy.

☐ It produces a 47 kg field homogeneous to 3 parts in 10⁶ over a 2 cm spherical volume.

The greater resolution obtained with increasing field is illustrated by these three spectra of decaborane:

☐ If this starts you thinking about what **you** could do with this solenoid (like studying oxygen-17, phosphorus-31, boron-11, or Knight shift in non-ferrous metals), drop us a line. We'll be glad to help.

ANALYTICAL INSTRUMENT DIVISION PALO ALTO, CALIF.

ZUG, SWITZERLAND

88 HAGIBORIM ST. P.O.B. 5390 HAIFA, ISRAEL

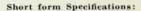
NUCLEAR SCIENTIFIC MEDICAL INDUSTRIAL

NEWS

- A new approach in nuclear instruments and systems through a complete line of current and voltage compatible modules, such as:
 - Fast Single Channel Analyzers •
 - · Current and Charge Amplifiers ·
 - · Current to Voltage Converters ·
 - · Linear Gates ·

etc.

send for descriptive literature.


PRECISION SINGLE CHANNEL ANALYZER MODEL SCTD-10X

A high speed instrument consisting of two highly stable tunnel diode discriminators preceded by an opera-tional amplifier, which provides a practically zero impedance for positive or negative input pulses.

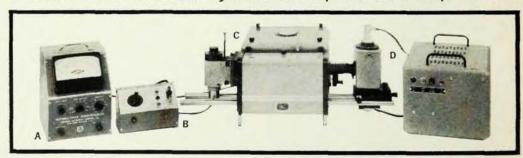
May be driven by either current or voltage source

The unusual feature of constant relative channel-width is advantageous in measuring the relative intensity of spectral lines with widely differing energies.

The instrument has a facility for coincidence or antico-incidence gating of the output by an external signal.

: 0.1 to 10 ma or 10 mV to 1 Volt. Baseline

: Absolute-0 to 1 ma, or Channel-width


0 to 100 mV.

Relative-1 to 10% in 10 steps.

Integral Linearity : Better than ±0.1%. Resolving time : Less than 0.7 microsecond.

Send for data sheet

Set Up Your Own Spectroscopic Systems with AMINCO's Building Block Monochromator Concept or order an assembled system for a particular requirement

ABSORPTION SPECTROPHOTOMETRY | FLUOROMETRY | PHOSPHORIMETRY | SPECTROPHOSPHORIMETRY | SPECTROPHOTOFLUOROMETRY

Start with one of three basic Grating Monochromators (Manually Operated, Regular or Slow Speed Models) then add any of a broad line of "building block" components listed in the Aminco Catalog to perform: transmission, absorption and/or emission studies as well as spectrophotometry, spectrophotofluorometry, spectrophosphorimetry. Systems assembled for one purpose may be rearranged at will to serve many other instrumental purposes. This flexibility makes the system components ideal for research laboratory use, graduate research studies and for educational use in teaching spectroscopic principles and techniques.

All components are mutually compatible —all mount in perfect optical alignment on the rigid optical bench for highly reliable and reproducible results. AMINCO's Building Block Monochromator System is suitable for use in the ultraviolet, visible and near infrared regions of the spectrum (up to 1200 mu) and is especially well-suited for the analysis of low-level luminescence.

■ For a complete description of this économical Monochromator system, request Bulletin 2387 PT11

Units shown above are arranged to build a spectrophotometer, A. Photomultiplier Microphotometer; B. Speed control for Monochromator Motor Drive; C. Monochromator; D. D.C. Power Supply.

AMERICAN INSTRUMENT CO., INC.

8030 Georgia Avenue, Silver Spring, Md.

of shock and detonation hydrodynamics at the Institute for Advanced Study and subsequently became a member of the Technical Section of the Naval Attache's Office in the American Embassy in London, working on military operations research. Toward the end of the war Dr. Calkin joined the staff of the Los Alamos Scientific Laboratory as a member of the Manhattan Project, remaining until 1946 when he accepted a Guggenheim fellowship at the California Institute of Technology. He later taught at the Rice Institute in Houston before returning to Los Alamos in 1949 as a member of the theoretical division. In 1958, he accepted a consulting appointment at New York University and at Brookhaven National Laboratory and, in 1961, was named head, and then chairman of the Applied Mathematics Department.

Dr. Calkin was a member of the American Physical Society and American Mathematical Society.

Henry J. Bolger, C.S.C.

Henry J. Bolger, C.S.C., associate professor of physics at the University of Notre Dame, died of a heart attack on May 4 at the age of 63. Father Bolger headed the Notre Dame Department of Physics from 1937 until September 1963. Under his guidance, undergraduate and graduate physics major programs were developed, and the full-time teaching staff grew to a total of 23.

Father Bolger was a native of Portland, Wisconsin. He graduated from Notre Dame in 1924 and received a master's degree from the Catholic University of America in 1929. Later, he did additional graduate work at the California Institute of Technology. From 1929 to 1932, he served as an instructor in the Physics Department at Notre Dame. In 1936, he was appointed associate professor in the Department. During World War II, he worked on the Manhattan District Project, returning to Notre Dame after the war, where he remained until his death. He was a fellow of the American Physical Society.

Recent years have seen great strides in small parts fabrication. Sandia engineers are now applying these advances to the design of microminiature mechanical components such as switches, velocimeters and timers. Exploiting the unique physical properties of tiny, thin-metal elements, they are not only developing working components of the size shown above, but the tools and techniques of manufacture as well. The parts will be fabricated to fine tolerances by electroplating, stamping, coining and chemical milling; assembly will be automatic. A modular design feature will allow common piece parts for many applications. In addition to being smaller and lighter, these miniature components are expected to be more reliable, quicker to develop and easier to manufacture than conventional designs.

Sandia scientists and engineers do related work in many diversified fields including: aerothermodynamics; polymers; plastics and foams; solid state physics; human factors engineering; and aerospace nuclear safety.

Sandia Corporation is a Bell System subsidiary and a prime contractor of the Atomic Energy Commission engaged in research, design and development of the non-nuclear phases of nuclear weapons. With Sandia you would work in Albuquerque or in Livermore in the San Francisco Bay area.

Sandia recruits on many major campuses and is primarily interested in recent and current outstanding graduates in many of the engineering and scientific disciplines at all degree levels. Consideration of applicants is based solely on qualifications and without regard to race, creed, color or national origin. U. S. citizenship is, however, required. For current opportunities, contact the Sandia recruiter at your college or write Professional Employment Organization 3151, Ref. 559-1, Sandia Corporation, Box 5800, Albuquerque, New Mexico, 87115.

ALBUQUERQUE, NEW MEXICO / LIVERMORE, CALIFORNIA