NEWS OF AIP AND AWARDS

Max Planck Medal

On April 23, the 106th anniversary of the birth of Max Planck, the German Physical Society announced that its highest award, the Max Planck Medal, would be given to Samuel A. Goudsmit and George E. Uhlenbeck. The medal is given annually for distinguished work in theoretical physics. The Society has departed from previous custom in announcing the awards for 1964 and 1965 at the same time because of the collaboration of the two recipients in some of the work for which they were honored. Professor Uhlenbeck was scheduled to receive his medal on October 5 at the German Physical Society's meeting in Düsseldorf, Dr. Goudsmit's medal will be presented at a later meeting.

Dr. Uhlenbeck is a professor and member of the Rockefeller Institute, and Dr. Goudsmit is deputy chairman of the Physics Department at Brookhaven National Laboratory. Both were born in Dutch territory. Working together at the University of Leiden in 1925, they introduced the concept of the spin of the electron to explain certain features of the fine structure of spectral lines. This concept, which plays a significant role in the understanding of atomic structure, was later shown by Dirac to follow from his relativistic generalization of the Schrödinger equation. Both men came to the University of Michigan in 1927 and remained on the staff there for many years. The award honors not only their early collaboration but also the significant contributions each has continued to make in theoretical physics.

Student Section awards

For the third successive year, the Bendix Corporation will sponsor an awards program for the Student Sections of the American Institute of Physics. The program provides grants, awarded on the basis of an annual competition, to support local Section activities. As in the past, proposals for projects submitted by the Sections

will be reviewed by a panel of judges, who will select those considered as the most likely to strengthen the AIP Student Sections program.

This year, the total funds available for all awards have been increased to \$2000; the upper limit of \$500 for any individual project remains unchanged. Although each proposal will be required to have the endorsement of the Section's faculty advisor, its planning and writing will be the responsibility of the student members.

Judges taking part in the competition this year will include David F. Griffing of Miami University in Oxford, Ohio, William W. Havens of Columbia University, and Myron A. Jeppesen of Bowdoin College.

Proposals for 1965 must be submitted by November 15, 1964, to Mrs. Ethel E. Snider, National Secretary, Student Sections, American Institute of Physics, 335 East 45 Street, New York, N.Y. The awards will be announced shortly after January 1, 1965.

Physics history project

Charles Weiner, a historian of science and technology, who was formerly at the Case Institute of Technology, has assumed the post of director of the American Institute of Physics Project on the History of Recent Physics in the United States. He succeeds W. James King, who has accepted an appointment as lecturer at the University of California in Berkeley. Dr. King, who was formerly a curator at the Museum of Science and Technology of the Smithsonian Institution, headed the Project during the first three years of its existence.

Mr. Weiner has been associated with the Archive of Contemporary Science and Technology at the Case Institute. He was formerly editor of the journal of the Cleveland Natural Science Museum. He holds a BS in metallurgical engineering, an MA in the history of science and technology and has recently completed his doctoral work in that field at Case. His professional

papers have dealt with early thermodynamics, the popularization of science in the United States, and the teaching and research career of Joseph Henry. He is now completing an edition of Henry's unpublished course of lectures on physics.

Gerald Holton of the Physics Department at Harvard is chairman of the history project's advisory committee of distinguished physicists and historians of science.

Aided by thousands of physicists and their institutions, the project has already located, catalogued, and gathered a large collection of historical source materials that document the development of physics and the physics community in the United States since the 1890's. These materials include the manuscripts, notebooks, diaries, correspondence, and apparatus of individual physicists who made significant contributions to the sciences. Fifteen hundred individuals and/or their families and institutions have already been contacted, and others will be asked in the near future. They are being asked to supply biographical and bibliographical data as well as information on the present location of and plans for preserving relevant historical materials.

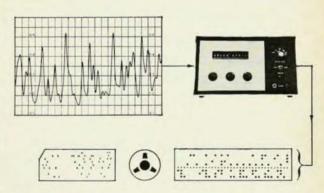
The response helped to produce a National Catalog of Sources for the History of Physics and the History of Physics Archives, both of them established and maintained at the AIP by the history project staff. In addition to the bio-bibliographical data, the Archives now contain autobiographies specially prepared for the project by 150 distinguished living physicists; taped interviews conducted by the project; more than 2000 photographs of apparatus, laboratories, individual physicists and groups; taped lectures, seminars and conferences involving Niels Bohr, J. Robert Oppenheimer, Leo Szilard, Enrico Fermi, and many others; and large collections of original documents of such men as Richard von Mises, Alfred Landé, G. W. Pierce, and D. L. Webster. These ma-

Using these for data recording?


You have better things to do.

Isn't it ironic that we've automated many of the tedious manual tasks of the industrial worker while many of our finest scientific minds must still hand tabulate analytical instrument data. The price for this waste of time and talent is high; payments are made in lost opportunity for scientific progress.

Is it necessary for a scientist to perform the functions


of a clerk? No. You can close the gap between laboratory instrumentation and a digital computer simply and inexpensively. How? By using a Datex Automatic Digital Data System to control laboratory instrument operation and record results in computer-compatible form (you extend instrument operating time and reduce opportunity for error in the bargain). For instance:

DIFFRACTOMETRY: The Datex Diffractometer Control and Recording System is pre-programmed to position the crystal to discrete angles, record scaler data, verify crystal position and convert this data into computer language. Like this:

Position properly oriented crystal on diffractometer, start the computer generated tape or cards in the reader and push the button. That's it. Now you're free for those better things. Investigations go faster, too. And the Datex System can operate continuously and reliably around the clock.

SPECTROPHOTOMETRY: The Datex Spectrophotometer Data Recording System converts analog output data of spectrophotometers to digital computer language. It can be added to your present equipment or made part of a new system. Like this:

Let the computer perform least squares calculations to improve signal-to-noise ratio, or simply match patterns; unknown to known. No more hand-digitizing of analog charts; Datex output is machine ready. And all systems are available in modular form. As your requirements increase, so does the system capability.

This is only a start. Datex Systems are readily applicable to any laboratory instrument for investigation. Interested? Tell us about your problem. We'll answer promptly with a detailed technical description and price of a system tailored to fit your needs precisely.

DATEX CORPORATION
A SUBSIDIARY OF GIANNINI CONTROLS CORPORATION
1307 South Myrtle Avenue, Monrovia, Calif. 91017

Aerospace El Segundo Opportunities

In virtually every technology, the engineers and scientists of Aerospace Corporation are working to provide significant advances leading to tomorrow's ballistic missile, space, and re-entry systems.

As a part of the Air Forcescience-industry team, the men of Aerospace Corporation perform advanced systems analysis and planning, theoretical and experimental research, general systems engineering, and corresponding technical direction of programs.

Immediate Opening

Solid State Physicist for Superconductivity Research

Aerospace Corporation now has open a staff position for a solid state physicist with an interest and background in superconductivity. Ph.D. with three years' experience preferred. Specific fields of investigation are:

Physics of superconducting thin films Properties of high-field superconductors Quantized flux investigations Ultra-low temperatures Microwave properties of superconductors

To Apply

Qualified applicants should write Mr. S. L. Robinson, Room 121, Box 95085, Los Angeles, California 90045. An equalopportunity employer.

AEROSPACE CORPORATION terials, and the growing, specialized collections of the AIP's Niels Bohr Library of the History of Physics, are now being organized to facilitate their use by scholars studying the development of physics and the physics community. Historians, physicists, and educators have already made use of these valuable historical resources at the AIP.

The National Science Foundationsupported history project is also working closely with academic physics departments and professional societies of physicists, advising them how and where to preserve documents that are now or soon will be historical source materials. Many departments and universities have responded by establishing or reactivating archival programs and by launching plans to write the history of their physics activities. The AIP history project is aiding these programs by locating and evaluating the historical significance of relevant source materials.

Special attention is also being given to the contributions of industrial physicists and their laboratories to our knowledge of physics and its applications. A survey of the needs and opportunities for documenting the history of industrial physics in America has just been completed, and the history project now has on hand a representative sample of the types of historical source materials that are readily available at present at the companies now doing research in physics. Eighty-five companies were contacted and twenty-five industrial research laboratories were visited by John Beer, associate professor of the history of science at the University of Delaware, who is a consultant to the project.

Frederick A. White of the Department of Nuclear Science and Engineering at Rensselaer Polytechnic Institute in Troy, N.Y., is also a consultant to the project in the area of industrial research and has been helping to develop historical activities at several firms with long traditions of physics research. As a result of these efforts, one firm has just engaged one of their retired senior physicists to start a program to document and write the history of physics at the company. Several other companies

that have been contacted by the AIP history project are now discussing similar programs.

Special brochures on the preservation of significant documents and instruments have been issued by the project and widely distributed to physicists and academic physics departments. The project's Newsletter, which serves as a medium of exchange of information on activities in the history of physics, first appeared in May 1964. More than 1500 historians, physicists, educators, archivists, and librarians have already asked to receive subsequent issues.

The interest shown by the physics community in its own history has made historians and archivists more aware of the need to document the history of science and its cultural influences. The AIP history project is working closely with professional societies in the history of science and technology to encourage this interest and coordinate activities in this area of scholarship.

Within the limits of the budget, space, and staff, the staff of the AIP history project plans to expand its activities in the coming year, in order to keep up with the continuing task of documenting the history of a rapidly changing science.

Lawrence Memorial Award

Nominations of candidates for the 1965 Ernest Orlando Lawrence Memorial Award are now being sought by the US Atomic Energy Commission. The award recognizes especially meritorious contributions to the development, use, or control of atomic energy in areas of all the sciences related to atomic energy, including medicine and engineering. Each award consists of a medal, citation, and prize of at least \$5000 to be given to not more than five recipients in any one year; the total amount is not to exceed \$25 000. Candidates must be US citizens who have not reached their 46th birthday by July 1, 1965. Nominations should be received by the Chairman, General Advisory Committee, USAEC, PO Box 19029, Washington, D. C. 20036, not later than November 1, 1964.