Space Radio Communication. Symp. Proc. (Paris, Sept. 1961). G. M. Brown, ed. 630 pp. American Elsevier, New York, 1962. \$25.00. Reviewed by Hans J. Hagger, Albiswerk, Zürich, Switzerland.

INDER the auspices of the International Scientific Radio Union (U.R.S.I.), a symposium on space radio communication was held from September 18 to 22, 1961, in Paris. The 37 papers presented at the meeting now appear in book form. General problems of satellite communication are discussed in two survey papers. Five papers deal with launching, control in space, and tracking of satellites. The topics of frequency allocation, interference with other space-borne and earthbound systems, and radio frequency propagation in the atmosphere and in space, were discussed with regard to earth-bound communication systems. Two sessions were devoted to electronic equipment used in the satellite and included reliability of the components, environmental tests, energy production on board the vehicle, and amplification of signals, particularly in connection with antenna problems for ground stations. Modulation systems were discussed with regard to the relationship between equipment costs caused by more complex modulation systems and the provision of a greater number of communication channels. Specific communication systems, i.e., reflection at orbiting dipoles, random-orbit satellites, 24-hour satellites, etc., as well as problems of transmission time and economic aspects were reviewed.

By the publication of these symposium papers, which are well edited and nicely presented by G. M. Brown, it is not intended to give a solution to every communication satellite problem, nor to show what can be done technically and scientifically, but rather to present the main problems of satellite communication. The book will be helpful to everyone interested in the work done in this field.

Cosmic Rays. By A. W. Wolfendale. 222 pp. Philosophical Library, New York, 1963. \$10.00. Reviewed by M. W. Friedlander, Washington University.

FAR too much space would be needed to itemize the more important omissions, shortcomings, and even errors of this disappointing book. Its probable readers, undergraduates and nonspecialists, will emerge from this pedestrian treatment of an exciting subject with no proper appreciation of the relative importance of its various parts, having covered 150-odd sections in the 222 pages. Further, the text suffers greatly from uncritical editing and too many pointless diagrams. The twelve halftone plates contribute to the book only in raising the price. There is every sign of a hastily prepared manuscript, yet the book was written in 1960 but did not appear until 1963. Even numerical values for the neutron lifetime (p. 157 and Table 19, p. 211) and the parsec (Fig. 82) are incorrectly given. Time after time, a discussion fails to give physical insight or completely omits important points. Some definitions, as they are stated in the text, are wrong.

What purpose is there in publishing such a book? Perhaps it fills some need as a catalog of the many facets of cosmic-ray research, but at what a price! In that respect, it should be pointed out that the book is published in England by George Newnes Ltd. and retails for about \$7. The difference between this and the price in the United States is considerably more than the postage involved. For those who insist upon buying it, reference to Nature will reveal the addresses of some booksellers in England.

Engineering Applications of Random Function Theory and Probability. John L. Bogdanoff and Frank Kozin, eds. Symp. Proc. (Purdue Univ., Nov. 1960). 421 pp. Wiley, New York, 1963. \$8.75. Reviewed by Thomas Kailath, Stanford University.

TYIC

- Mg

和

MODI

CHAN

LOUIS

430

Scottle State

Wa I

of backy

PERHAPS the most exhilarating way to begin a symposium on noise theory is with a talk by Mark Kac. In this one, he discusses the problem of finding the mean square distance between the zeros of an RLC Gaussian noise process. In typical fashion he brings a variety of ideas and techniques to bear on the problem and enlivens the discussion with various asides and comments. Nine other papers are included in this interesting volume. Few people would be knowledgeable in all the areas represented here-reliability studies, aerodynamic noise, safety analysis, Wiener filtering, etc. But the papers have been written with this in mind. They provide interesting and useful insights into how probabilistic techniques can be applied to a wide range of engineering problems. One of the most fascinating papers is by E. W. Montroll and is called Theory and Observations of the Dynamics and Statistics of Traffic on an Open Road. Most of us would feel that traffic problems are more a part of the fields of psychology and social relations than of mathematics and physics. Montroll's paper is an excellent illustration of how such a "nonphysical" problem can be studied by translating various assumptions about the acceleration pattern of a single car and about laws of car-following into mathematical form. As Montroll points out, this paper shows "that the physicist or mathematician who occasionally wants to free himself from the grooves into which the standard subject matter of the science has squeezed him might, with some entertainment, examine nonphysical processes with the same spirit that the natural philosopher examined the physical world a hundred years ago." The papers by Murphy and Freudenthal are in somewhat the same vein.

Murphy relates the life-testing problem to that of finding the first passage time probability for the "stress path" of a system to lead into a failure state. Freudenthal sets up probabilistic models for structures that enable safety factors to be chosen with regard to specified probabilities of failure. The other papers in this volume are in a more conventional mathematical framework. Siegert discusses the problem of finding the probability densities of various nonlinear functionals of Gaussian Markov random processes. Kalman presents

FUNDAMENTALS OF ELECTRIC-ITY AND MAGNETISM

By ARTHUR F. KIP, University of California, Berkeley. 432 pages, \$7.95.

This book is a compromise between the need for presentation of the phenomena of electricity and magnetism and the desire to develop and display the unity of the theory at a level consistent with the beginning student's experience of science or engineering. Basic laws and concepts are related to experimental results; help is provided for a basic understanding of Maxwell's equations. Includes some basic concepts of solid state physics and introduces some phenomena, illustrating the impact of quantum mechanics on classical electricity and magnetism.

CONCEPTS OF MODERN PHYSICS

By ARTHUR BEISER, New York University. 384 pages, \$7.95.

This rigorous, extremely clear, and logically developed treatment of modern physics is distinguished by its well-integrated progression from relativity and quantum theory through the atom, molecule, and nucleus. Designed for sophomore or junior year students majoring in engineering or one of the physical sciences, and who have completed elementary courses in physics, chemistry, and calculus, it delves into quantum theory early with thorough discussions of quantum-mechanical ideas and formulas. The viewpoint is contemporary, and subject matter is introduced with a minimum of engineering applications and historical detail.

INTRODUCTION TO WAVE MECHANICS

By LOUIS HARRIS and ARTHUR L. LOEB, Massachusetts Institute of Technology. 300 pages, \$8.95.

A self-contained textbook for a one-semester course, presenting most of the principles of non-relativistic wave mechanics, with examples illustrating applications of these principles. It is intended for students having a background of about two years of college mathematics and physics, including

atomic physics. The authors have aimed at a logical sequence of topics, and a detailed discussion of each. Important principles are first illustrated by examples, and then again by problems interspersed throughout the text. Emphasis is more on depth in detail than on a broad coverage of topics.

NUCLEAR PHYSICS: AN INTRODUCTION

By WILLIAM BURCHAM, University of Nottingham, England. Off press.

A superb new text for undergraduate and graduate courses in nuclear physics. Experimental aspects of the field are stressed, and a great amount of data and expository material are presented lucidly. The text is divided into five parts: the nuclear atom; experimental techniques of nuclear physics; static properties of nuclei; dynamic properties of nuclei; and basic interactions of nuclear physics.

☐ INTRODUCTION TO QUANTUM MECHANICS

By P. T. MATTHEWS, Imperial College, London. 192 pages, \$5.00.

A sound, step-by-step introduction to the basic concepts of quantum mechanics. The author has kept mathematics to a minimum while introducing fundamental ideas in such a way that the student may proceed readily to more detailed treatments of special branches or more sophisticated discussions of the general theory. For an undergraduate course in the subject.

THE MACHINERY OF THE BRAIN

By DEAN E. WOOLDRIDGE, California Institute of Technology. 252 pages, \$5.95.

This book is aimed at the large body of physical scientists and engineers interested in current research on the nervous system but lacking an adequate background in biology to read the technical works in the field. It is a nonmathematical and nontechnical account of the exciting and interesting work being done in the field of brain research. Where appropriate, analogies are drawn between the biological subject matter and related computer principles.

Reserve your on-approval copies now

McGRAW-HILL Book Company

330 W. 42 St., New York 36, N.Y.

Oxford University Press

Nuclear Power Technology

Edited by F. J. Pearson. Reactors, core performance and materials, instrumentation, control, and the economics of nuclear power receive attention in this comprehensive introduction. Detailed enough to interest specialists and executives as well as students. \$6.75

Astrophysical Quantities

Second Edition

By C. W. Allen. Professor Allen has added essential new material to the second edition of this largely numerical and tubular work. Astrophysical data has been reassessed, and all information rechecked.

\$10.10

Radioactivation Analysis

By H. J. M. Bowen and D. Gibbons. Theoretical and practical details of this sensitive and selective method of elementary analysis, a most important peaceful use of atomic energy. The authors, both engaged in atomic research, review recent applications in chemistry, biochemistry, geochemistry, metallurgy and the semiconductor field. \$8.00

Strange Particles and Strong Interactions

By Richard Henry Dalitz. Experimental evidence on resonance states is examined here. A formal reaction theory is developed and illustrated, and related to more elaborate dispersion theory. Proposed experiments for determination of strange particle parities are included also. Tata Institute of Fundamental Research Studies in Physics. Paper. \$5.05

Oxford University Press, New York 16, N. Y.

a detailed study of least-squares filtering problems for such Gaussian Markov processes. The restriction to such processes enables the solution to be given in a recursive form, convenient for computations on "growing" data. Dyer gives rationalizations for the various equations that have been used to characterize aerodynamic noise. Jaynes discusses how the notion of entropy as uncertainty may be used to obtain prior distributions for the Bayesian solution of various decision problems. D. Slepian gives an outline-without any equations-of three basic communication problems that require the introduction of probabilistic notions-traffic problems, source characterization, noise theory. The volume is introduced by S. S. Shu who gives a brief history of probability in physics and engineering and discusses the papers that follow in the setting of his views on the future role of probability in engineering. In final summary, an entertaining and stimulating volume.

100

2010

TO No

- Proble

in Pres

160.17

The Re

Burg

(多)

ST II

回海

1 四

SHIP

Africe

Patty

9211

一世世

Viguit

五年

Ale to

Blob

Sale of the last

ali:

Allen !

图 19

Noise and Fluctuations: An Introduction. By D. K. C. MacDonald. 118 pp. Wiley, New York, 1962. \$6.50. Reviewed by R. Bruce Lindsay, Brown University.

NOISE in acoustics is often defined as unwanted sound, but this is a far from satisfactory definition. Much more relevant is the viewpoint according to which noise is a random series of tones of a wide range of frequencies having no regular connection with each other. From this standpoint, there is a close analogy between acoustical noise and fluctuation phenomena like those encountered in Brownian motion and other instances of physical variables which are purely random functions of the time. It is on this analogy, indeed, that the use of the word "noise" in current physical literature is based. The book under review is a very attractive brief survey of fluctuation phenomena in general. As such, it will serve as an effective introduction to the more elaborate treatises on the subject which are now so numerous.

Professor MacDonald is a physicist and hence is not inclined to let mathematical rigor get in the way of physical understanding. The analysis he presents is quite within the grasp of the advanced undergraduate college physics major, and all steps are clearly explained. The physical tone of the book is set at the outset by the careful discussion the author gives of the Brownian motion, which is treated from several points of view in order to emphasize the various techniques available for treating random processes in general. This is followed by a more systematic study of the autocorrelation function and the Wiener-Khintchine theorem, which relates this function to the power spectrum of a random variable. Illustrations are presented from electrical fluctuations as well as traffic problems. Finally the Fokker-Planck equation is introduced and applied. The last quarter of the book is devoted to problems concerning noise in electric currents, mainly