ing, that is because the author has resisted the temptation to make things easy by the time-honored method of omitting the difficult parts. The bibliography is extensive and includes many references to papers published in 1962.

Those concerned with linear problems would do well to study the book carefully before embarking on computation. Nothing at all is said in it about nonlinear systems, and this too is a fairly accurate reflection of our present state of knowledge!

Hilbertsche Räume mit Kernfunktion. By Herbert Meschkowski. 256 pp. Springer-Verlag, Berlin, 1962. Clothbound DM 58, paperbound DM 53. Reviewed by Dagmar Renate Henney, University of Maryland.

WERE it not for the first two chapters which contain an introduction to the theory of Hilbert spaces, this book could be recommended as an informative reference book. The notation used by the author is not the standard one and is liable to confuse anyone whose first contact with Hilbert spaces is through this text. There are mistakes in the proofs of certain theorems, and it might have been better had the author referred the reader to other well-known books for such a background. Here are a few of the reviewer's objections:

On page 6, a linear space with inner product is defined to be a metric space. This notation is very unfortunate, impractical, and easy to misunderstand, since it is not standard notation.

On page 15, a subset $H' \subset H$ is defined to be complete, if the orthogonal space consists only of the origin. From this it would follow that every dense set H' of H is a complete metric space.

The remainder of the book obviously contains the subject matter which is dear to the author. Here the material is well organized and carefully presented. The following subjects are discussed in detail: orthonormal systems with special properties, Hilbert spaces with reproducing kernels, Hilbert spaces with positive matrices, double orthogonality and extremal problems, Hilbert spaces of solutions of elliptic differential equations, and kernel functions in the theory of several complex variables. I do not know of any other book in this field that contains such a variety of material. It develops into a remarkable book as the author progresses.

Distributions. An Outline. By Jean-Paul Marchand. 90 pp. North-Holland Publishing Co., Amsterdam, 1962. Distr. in US by Interscience, New York. Paperbound \$4.75. Reviewed by T. Teichmann, General Atomic Division, General Dynamics Corporation.

THE theory of distributions (with its concomitant, the theory of generalized functions) has become a fashionable and useful part of modern pure and applied analysis. Together with the related, though not entirely equivalent, modern operational calculus, it en-

ables the direct solution of a variety of important problems involving some degree of nonuniformity which previously required special and not entirely unequivocal treatment in each case. Because the subject was developed from the pure mathematical side, it has, however, been difficult to find adequate short descriptions for the reader more interested in applicationsthough the books of Erdelyi and Lighthill do cover restricted areas rather well, while the more extensive works of Mikunsinski and Gelfand and Schilow (in German) provide comprehensive and clear treatments of both the theories and their applications. The present book purports to cover a wider range concisely and from a simple point of view. It is allegedly aimed at the physicist, and as such, it should be welcomed. Unfortunately, while the 80-odd pages (at more than five cents a page!) do contain the essence of the theory of distributions and operational calculus, this is somewhat obscured, at least to the physicists, by the author's evident desire to prove his mathematical purity by complicated notations and a specious axiomatic treatment. If one overcomes these hurdles, one finds very little to get one's teeth into: in the chapter on distributions, for instance, there is not even an explicit treatment of improper integrals! The chapter on operational calculus is somewhat more down to earth, but still replete with unnecessary formal jargon.

There is certainly a need for a book covering what this one purports to do, but it has not yet been met. The reader who wishes to learn about these topics, even if only for some applications, will have to do so from the more extensive works mentioned earlier.

Flows in Networks. By L. R. Ford, Jr. and D. R. Fulkerson. 194 pp. Princeton Univ. Press, Princeton, N. J., 1962. \$6.00. Reviewed by Arthur Ziffer, US Naval Research Laboratory.

THIS book presents one approach to that part of linear programming theory that has come to be encompassed by the phrase "transportation problems" or "network flow problems". Ford and Fulkerson use the latter designation because it is more nearly suggestive of the mathematical content of the subject and also because many of the applications they examine have nothing to do with transportation.

The first chapter, "Static Maximal Flow," studies the problem of maximizing flow from one point to another in a capacity-constrained network. Most of the chapter is concerned with the statement, proof, amplification, and extension of a basic result which the authors call the max-flow min-cut theorem. The proof is constructive and yields a process which forms the basis for almost all the algorithms presented later in the book. Also included in this chapter is a brief discussion of how the max-flow min-cut theorem is a kind of combinatorial counterpart, for the special case of the maximal flow problem, of the more general duality theorem for linear programs.

The first part of Chapter 2 develops several theo-