ticularly apparent in algebraic manipulations. There is no rational reason in retaining the old W; even Racah has completely switched over to the six-j-coefficient.

Notwithstanding the flaws, this booklet should prove convenient and useful both as a tool in computations and as a compact introduction to angular-momentum theory.

An Introduction to Transport Theory. By G. Milton Wing. 169 pp. John Wiley & Sons, Inc., New York, 1962. \$7.95. Reviewed by George Weiss, University of Maryland.

MOST physicists are familiar with one form or another of transport theory as a physical theory. In this book, transport theory is presented as a purely mathematical theory along the lines of recent work of Bellman and collaborators on the invariant-imbedding method. Unfortunately, it does not appear that this method leads to the solution of any fundamental problems although it does, however, lead to a unified and elegant derivation of transport equations.

Wing analyzes few physical problems. Instead, he first concentrates on some one-dimensional rod examples, which can be solved exactly and then proceeds to set up equations for more complicated systems. The concept of criticality remains, throughout the book, a fairly mysterious one since the author deals with mathematical systems rather than physical ones. The only fairly realistic problems for which solutions are actually found are those of reflection from a semi-infinite slab first treated by Chandrasekhar, and the Milne problem solved by the Wiener-Hopf technique. The solutions to these problems are given in somewhat abbreviated form possibly because the author does not consider it part of his main contribution.

It may indeed be of some value to try to understand the mathematical problems of transport theory independently of physical interpretation, and for those whose interests are mainly mathematical this book provides a good interpretation. Those whose interests are directed towards the solution of actual physical problems will find this to be a disappointing book.

Progress in Microscopy. By M. Françon. 295 pp. Row, Peterson & Co., Elmsford, N. Y., 1961. \$9.00. Reviewed by W. T. Wintringham, Bell Telephone Laboratories.

THERE is a tendency today to look across the Atlantic and to comment that European facilities for training in the field of optics are far superior to those in the United States. One proper measure of such a difference is the content of publications on the two sides of the ocean.

Such comparison does little to refute the belief that the Europeans are ahead of us in the formal preparation of source material. The pages of the journals and transactions of the scientific societies in England and on the Continent contain a substantial fraction of re-

NEW BOOKS

- THE QUANTUM THEORY OF MANY-PARTICLE SYSTEMS edited by Harry L. Morrison (International Science Review Series, Volume 2) Ready \$4.95
- PROCEEDINGS OF THE EASTERN THEORETICAL PHYS-ICS CONFERENCE, University of Virginia, October 1962 Ready paper: \$5.00
- GEOPHYSICS: THE EARTH'S ENVIRONMENT (The 1962 Les Houches lectures) edited by C. DeWitt, J. Hieblot, A. Lebeau Ready paper: \$8.50 cloth: \$10.50
- QUANTUM FIELD THEORY AND THE MANY-BODY PROB-LEM by T. D. Schultz June paper: \$3.95 cloth: \$5.95
- PHYSICS AND CHEMISTRY OF HIGH PRESSURES Proceedings of the Symposium sponsored by the Society of Chemical Industry, London, June 1962 Ready \$19.50
- THE DEVELOPMENT OF WEAK INTERACTION THEORY edited by P. K. Kabir (International Science Review Series, Volume 3) June \$4.95
- KINETICS, EQUILIBRIA, AND PERFORMANCE OF HIGH-TEMPERATURE SYSTEMS Proceedings of the Second Conference, UCLA, March 1962 edited by Gilbert S. Bahn June \$16.50
- PHYSICS AND CHEMISTRY OF CERAMICS Proceedings of the Symposium sponsored by the Office of Naval Research at The Pennsylvania State University, May 1963 edited by C. Klingsberg June \$14.50 Professional edition: \$9.50
- FLUID DYNAMICS AND APPLIED MATHEMATICS Proceedings of the Symposium sponsored by the Institute for Fluid Dynamics and Applied Mathematics, University of Maryland edited by J. B. Diaz and S. I. Pai \$8.00
- DIRECT INTERACTIONS AND NUCLEAR REACTION MECHANISMS Proceedings of an International Symposium, Padua, September 1962 edited by E. Clementel and C. Villi July \$35.00
- PROCEEDINGS, THIRD SYMPOSIUM ON ADVANCED PROPULSION CONCEPTS, October 1962 edited by W. F. Boyle In press \$14.50
- RARE EARTH RESEARCH Proceedings of the Second Conference sponsored by the Denver Research Institute edited by J. F. Nachman and C. E. Lundin \$14.50
- GROUP THEORETICAL CONCEPTS AND METHODS IN ELEMENTARY PARTICLE PHYSICS Proceedings, Istanbul, July 1962 edited by F. Gursey In press
- CHEMICAL ROCKET PROPULSION AND COMBUSTION RESEARCH by S. S. Penner \$5.75
- SPACE RESEARCH AND TECHNOLOGY Selected Papers Read at Symposia sponsored by the British Interplanetary Society edited by G. V. E. Thompson \$5.95
- NUCLEAR ORIENTATION edited by M. E. Rose (International Science Review Series) June \$4.95
- GORDON AND BREACH
 SCIENCE G 150 FIFTH AVE.
 PUBLISHERS B NEW YORK 11

ports of fundamental studies; while, in contrast, the pages of our proceedings are more heavily weighted with papers bordering on engineering. Except for Strong's Concepts of Classical Optics, recent textbooks treating fundamental optical problems largely have been prepared by European authors. Born and Wolf's Principles of Optics appears to be the text most highly considered in this area on both sides of the Atlantic.

This same situation prevails in the area of trade school or technical institute texts. On this side of the ocean we have a number of native texts; most of which, however, treat the whole range of optical applications or of optical instruments in a single book of two- or three-hundred pages. The European trend, in contrast, is to treat a single optical instrument in an extended text.

Françon's Progress in Microscopy is one of these special-field books. In nearly three-hundred pages the author discusses specialized techniques of microscopy developed during the past two decades and describes commercial apparatus which is available to implement these techniques. The only comparable texts prepared on this side of the Atlantic are those written for the training of technicians in several fields, of which electronics is typical. Françon's text, therefore, clearly demonstrates a fundamental difference between philosophies regarding the place of optics and the training of optical workers on the two sides of the Atlantic.

The first third of *Progress in Microscopy* contains a review of the limits set to image formation by the wave nature of light and of the principles of phase microscopy. The remainder of the text contains discussions of the several specialized applications of microscopy with descriptions of apparatus available for these applications.

The author's treatment is lucid and his topics well chosen. The one matter which disturbed this reviewer was an unfortunate tendency on the part of the author to mention investigator's names without including specific references to their publications. The text is concluded with a bibliography of 92 entries, but it is not keyed to the text and does not include all of the names to which reference is made.

Magnetohydrodynamics. Symp. Proc. (Evanston, Ill., Aug. 1961). Ali Bulent Cambel, Thomas P. Anderson, Milton M. Slawsky, eds. 393 pp. Northwestern Univ. Press, Evanston, Ill., 1962. \$15.00. Reviewed by R. E. Street, University of Washington.

I NASMUCH as a collection of twenty-four papers given at the fourth biennial gas-dynamics symposium reflects the particular research interests of the authors, this volume will not give the reader an introduction to or a broad survey of the field. Most workers in the field of magnetohydrodynamics will probably find one or more of the papers of interest. The emphasis is primarily on problems of engineering interest rather than plasma physics, although the latter topic is embodied in some of the contributions.

Almost half of the papers are concerned with theoretical solutions of the macroscopic equations. These present fluid-dynamic solutions for inviscid and viscous flows, particularly for certain aerodynamic configurations. One, for example, obtains a solution of the highly rarefied plasma flow about a thin airfoil, solving a fluid-dynamic equation derived from the Boltzmann equation. The macroscopic point of view predominates except for two papers. One of these is an excellent review of moment methods in transport theory, although entirely concerned with a neutral gas. The other considers the Lorentz gas as an application of a new approximation analysis for linear Boltzmann-type equations.

There are several papers on MHD power generation and ion propulsion, including a good review paper on this development. Two papers give new calculations of the transport properties of high-temperature air and carbon dioxide. Another is a critical discussion of the theory of high-temperature radiative properties of hydrogen with some new results. Four papers are experimental and give new measurements on a blunt-nosed body of stagnation-point heat transfer in argon up to Mach 14, wave velocities of Alfvén waves in a hydrogen plasma, of ion densities in seeded hydrogen and ethylene flames, and the energy transfer to a plasma accelerated by Lorentz forces. Another paper discusses the design of a plasma accelerator to make use of the Lorentz force, concentrating upon the loss mechanisms to be expected.

Most of the papers are clear, well written, and present sufficient detail so the reader can follow the argument without too much effort. This is especially true of the review articles.

Molecular Biophysics. By Richard B. Setlow and Ernest C. Pollard. 545 pp. Addison-Wesley Publishing Co., Inc., Reading, Mass., 1962. \$11.75. Reviewed by Joseph G. Hoffman, University of Buffalo.

THE authors point out in the preface that this book is set at a level for seniors and first-year graduate students. The exposition is superb in that it describes the pertinent biological systems simply and clearly, and then gives the essential discussion in terms of basic physics and chemistry. The factual presentation is excellent. Even though it is a textbook, with problems assigned after each chapter except the first, it makes for easy and exciting reading. The language and approach to the topics are definitely those of the basic scientist in chemical physics. I am sure that most physicists advanced beyond the authors' specified level of the first-year graduate will be intrigued by the phenomena described and particularly the methods employed in the physical analysis.

The unusual nature of this textbook is shown, for example, in the discussion of the information content of a bacterial cell. The authors show how to calculate the physical entropy per cell for comparison with the information content. The principles are sound, but the figures used may be way off. The entropy content of a