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STATISTICAL PROPERTIES OF

SPECTRA
By C. E. Porter

THE purpose of this paper is to present a rapid
survey of the statistical properties of spectra,
using both atomic spectral data and nuclear

spectral data. In many cases, only one kind of rele-
vant data exists; for example, very little is known
about atomic-particle transition-probability data, so
in such areas we must confine our attention to
nuclear data. When both atomic and nuclear data
are available, we have tried to select those data
which are usually not treated according to the general
approach of this paper. Throughout our discussion,
then, we will be mainly emphasizing analogies and
the manner of handling different sorts of data accord-
ing to the spirit of this paper.

Spectra

What are energy spectra? In this discussion we
shall always have in mind the energy spectra of a
many-nucleon nucleus or a many-electron atom (or
molecule), both of which are outstanding examples
of complex many-particle systems for which a sta-
tistical treatment is appropriate. In order to under-
stand what is meant by energy spectra, it is conveni-
ent to develop our discussion by comparison with
the more familiar many-planet solar system. In the
case of the planetary system the planets play a role
similar to the electrons in a complex atom with the
sun at the center taking the part of the nucleus.
Similarly it is now fashionable to think of the
nucleons in a nucleus as though they move in a central
field which could be compared to the gravitational
field of the sun, making the solar system analogy good
in a qualitative sense for both the atom and the nu-
cleus. In the nuclear case, the attractive central field
in which the nucleons move is created completely by
the nucleons themselves, so that the fields created by
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the nucleons enter into the nuclear system in a more
complex way than is usually imagined as a first-
approximation picture of the solar system or of a
many-electron atom, but we shall ignore this compli-
cation for the present.

There are two kinds of orbits in the solar system,
those of the planets, which are bound orbits, and
of (noncyclic) comets, which traverse the solar system
in unbound orbits. A comet can thus be said to be
an unbound planet. These different orbits have differ-
ent total energies, and the different energy states
constitute the energy spectrum of the solar system.
The planetary spectrum is sketched in Fig. 1.

The energy spectrum of the solar system is con-
tinuous (note the shading in Fig. 1) and runs from
an energy of negative infinity for tightly bound
(planetary) orbits through zero energy making the
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Fig. 1. Spectrum of solar system. Note the
broken energy scale. Shading emphasizes
the continuous character of the spectrum.
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REF. AEL
LSBEL: J»LS Fig. 2. Atomic energy levels of neutral alumi-

num (All) and neutral mercury (Hgl) taken
from reference IS. Numbers not in parentheses
labeling the levels are JwLS, and the numbers
in parentheses indicate a cluster of that num-
ber of levels lying too close together lo be
drawn separately. Note especially the large
number of discrete unbound levels.

Fig. 3. Summary of the characterization of a dis-
crete energy state. The total width of a nuclear
level includes the total radiation width, the neu-
tron width, etc., while that for an atomic level
includes a total radiation width and an electron
width. The usual energy-time uncertainty connec-
tion between width and lifetime holds, of course.

transition to unbound (comet) orbits which may
have energies up to positive infinity (in principle)
as is indicated in Fig. 1. It should also be pointed out
that an unbound orbit can be thought of as a scatter-
ing orbit; i.e., the comet is scattered by the solar
system.

For a wave-mechanical system (which the atomic
and nuclear systems are) only non-self-destructive
wave phenomena are allowed. This additional re-
quirement upsets the continuous character of the
spectrum, changing a typical energy spectrum into
a partly discrete, partly continuous spectrum. In a
more accurate sense, the spectrum remains continu-
ous but is modulated into more dense and less dense
countable (hence discrete) groups. Crudely speaking,
if a wave is not to be self-destructive, an integral
number of wavelengths must fit into the orbit of the
particle, and this is how the element of countability
or discreteness is introduced into the spectrum. The
spectra of two typical atoms, neutral aluminum
(All) and neutral mercury (Hgl), are shown in
Fig. 2.

First of all, we see that there is a ground state for

the system at — Eo which is bound by the finite
energy Eo. Thus no infinitely tightly bound orbits
are allowed in the wave-mechanical system. Near the
ground state, the spacing between the discrete levels
is typically rather large and decreases rapidly as tlie
unbound states are approached. The unbound dis-
crete states are (in the nuclear spectrum at any rate)
very closely spaced, and they eventually overlap and
merge into an unresolvable continuum.

Of all of the states indicated in Fig. 2, only the
ground state — Ea can be completely stable. (We
shall ignore beta-decay effects in this article.) All of
the excited (nonground) bound states are unstable
with respect to radiative decay (emission of light),
and the unbound excited states are unstable with
respect to the emission of particles (electrons in the
atom or nucleons or nucleon clusters in the nucleus)
as well as light emission. (By definition any unbound
particle can run away like a comet.)

Each of the excited states has an intensity profile
similar to that sketched in Fig. 3. The total width F
of the state is indicated as well as the energy position
E of the state. Also pointed out in the figure are the
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Fig. 4. The hierarchy of a theoretical calculation
is indicated with the Hamiltonian of the system
as a starting point. It is important to note that
spacings, widths, and expectation values all fol-
low from hypotheses with respect to H. The major
statistical difference between the "single-ended"
character of a width and the "double-ended"
character of an expectation value is also indicated.

connections between width T, transition probability
P, and mean life r and the usual time-energy uncer-
tainty relation. It is emphasized in the figure that
the discreteness of a spectrum is a statistical prop-
erty, since the mean width must be much less than
the mean spacing between states in order that they
be countable.

It is perhaps worth stressing that models of spectra
are almost always stable (e.g., even the usual models
of the hydrogen atom). This is a property only of
models and not of real spectra.

We now sketch briefly the theoretical source of the
properties of spectra. In Fig. 4 the usual connections
are indicated. The energies E and the wave functions
\p of the states come from the Hamiltonian H of the
system via the Schrodinger equation. These in turn
give the energy-level spacings S, the level widths V,
and expectation values <O> of a relevant operator
0. It is emphasized in the figure that the statistical
properties of the widths and expectation values differ
because of the off-diagonal and diagonal character of
the matrix elements involved.

The concept of degeneracy is very important for
us. We must now take notice of the additional labels
on the energy levels in Fig. 2. These labels are associ-
ated with symmetry properties of the Hamiltonian
H of the system. As indicated in Fig. 5, typical
labels are the total angular momentum / , the parity
ir, the total orbital angular momentum L, the total
spin angular momentum S, the energy E, and the
possibility of making the matrix elements of the

Hamiltonian H real. Each of these additional cori
stants of the motion is associated with a symmetr
transformation as shown in the figure. In particular,
the reality of the matrix elements of H is a conse-
quence of the assumed time reversal invariance of
the Hamiltonian.

Two levels which coincide in energy are said to be
degenerate. The general feature of degeneracy is that
energy levels with the same symmetry labels do not
in general coincide, i.e., are not degenerate. Thus, it
is said that levels of the same symmetry "repel" each
other. Another way to say this is that the nearest-
neighbor spacing between two levels of the same
symmetry does not vanish. We will discuss statistical
degeneracy later in terms of energy-level spacing
statistics.

Average Properties of Spectra

The average properties of spectra arc much more
complicated to present than the fluctuations. The
reason for this is that the fluctuation laws are inde-
pendent to a good approximation of the specific sys-
tem (and hence the specific forces being considered)
much in the same way that the well-known Gaussian
distribution arises in many different connections in
practice. (The physical significance of the average
values may be quite different, even though the
fluctuation law is the same.)

The basic average property is the mean level den-
sity. A very complete review article on this subject
has been written by Torleif Ericson.1 We content
ourselves here with a typical plot of some atomic
energy-level data (Ericson discusses only nuclear
data when he refers to experiments) to indicate how
such data are usually handled. In Fig. 6 are plotted
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.Rg. 5. A list of typical symmetry labels is
given. For later reference, we emphasize the
association between matrix-element reality and
time-reversal invariance.
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Fig. 6. Upper part of figure shows cumula-
tive energy-level distribution data2 for even
and odd parity states of neutral osmium
(Osl). Probably missing are even parity lev-
els in the 30 000 to SO 000 cm"1 range. Lower
part of figure shows ratio of two upper
curves, giving a typical average parity sta-
tistic when smoothed. Note that there are
parity fluctuations at low excitation. Com-
plete theories of these effects are lacking.

FPW SPHERICAL NUCLEUS, SAXON POTENTIAL
CWE SPHERICAL NUCLEUS, TRAPEZOIDAL

POTENT Mi.. SURF ACE ABSORPTION
I DEFORMED NUCLEUS (SAME POTENTIAL)

Fig. 7. Experimental (points) and theoretical (curves)
5-wave strength functions (conductive property of spectra).
The theoretical computations are explained in the text.
(Figure made available to the writer by J. A, Harvey.)

in the top part of the figure the cumulative number
of levels,

p(e)de,

as a function of excitation energy E for neutral
atomic osmium (Osl) as obtained by van Kleef.2 As
each new level appears, a unit vertical step is taken
in the histogram. Note that the levels have been
separated according to parity and that there is a
definite indication that a number of even parity
levels have been missed between 30 000 and SO 000
cm"1. (The probable missing of levels was pointed
out to the writer by R. E. Trees.) The steep rise of
the odd-parity level density resembles the typical
exponential rise of theoretical level densities. Of
course, the actual level density is the slope of the
curve.

In the lower part of Fig. 6 is plotted the ratio of
the total number of positive parity levels to the total
number of negative parity levels. There are notice-
able fluctuations in the plot (which we will not dis-
cuss in this article), but the ratio eventually settles
down to a number close to one.

For the moment, we omit discussion of average
expectation values (we will come to gyromagnetic
ratios when we discuss fluctuations) and turn our
attention to average quantities associated with in-
stability. The first of these is the strength function (a

conductive property of spectra), which can be denned
for any type of channel (electron, gamma ray, fission,
etc.), but which has mainly been measured for neu-
trons incident on nuclei. (It would be very interesting
to know the electron strength function of neutral or
ionized atoms.) In Fig. 7 we show the current data
along with theoretical calculations for 6"-wave neu-
trons. The label FPW (Campbell, Feshbach, Porter,
and Weisskopf3) stands for a potential of the Eckart
form with

R = 1.15 ^!1/3 + 0.4 fermi,
V = 52 MeV,
W = 3 MeV,
d = 0.52 fermi,

while the initials CWE (Chase, Wilets, and Ed-
monds4) stand for the parameters (with a trapezoidal
potential)

R = 1.35 A113 fermi,
V = 44 MeV,
W = 2.2 MeV,
A = 2.2 fermi = 90% - 10% distance,
jg = distortion taken from £2 transition data

(variable from nucleus to nucleus).

Note that the black nucleus value for diffuse sur-
face potentials differs from that for sharp surface
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P-WAVE NEUTRON STRENGTH FUNCTIONS
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Fig. 8. Experimental (points) and theoretical (curves)
P-wave strength functions. (Figure courtesy J. A. Harvey).

FPW SPHERICAL NUCLEUS
SAXON POTENTIAL
CWE SPHERICAL NUCLEUS
TRAPEZOIDAL POTENTIAL
SURFACE ABSORPTION
CWE DEFORMED NUCLEUS

Fig. 9. Experimental (points) and theoretical
(curves) 5-wave potential scattering amplitude
(susceptive property of spectra). The theoreti-
cal computations correspond to those in Fig. 7.
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potentials. Fig. 8 shows similar results for the
/'-wave strength function at low energies. The calc
lated curves are taken from Kreuger and Margolis.5

The parameters used differ from the usual sets, espe-j
cially since they rind a need for a rather large spin-1
orbit coupling. Recently, relevant computations of i
strength functions have been made by Perey and \
Buck6 using a nonlocal optical potential. These au-J
thors are able to achieve an unusually good inteil
polation through the experimental data with no
explicit energy dependence in their parameters.

The other type of quantity associated with insta-1
bility is the susceptive property or "potential" scatter-
ing length R'. Data and numerical computation of
this quantity are shown in Fig. 9. The references in
the figure follow the same pattern as those in Fig. 7.

In Fig. 10 are plotted atomic radii as taken from
the American Institute of Physics Handbook. In a
sense, these radii represent a susceptive property of
atoms. There are a few notable features in this plot.
First of all, the over-all trend of the radius is an
increase, not a variation of Z~1/3 as predicted by the
Thomas-Fermi model of the atom. Secondly, the rare
gases have unusually large radii. Unfortunately, the
AIP Handbook does not describe the experiments on
which these radii are based. In any event, there
seems to be every motivation for further measure-
ments of radii by electron scattering from atoms to
see if such radii are compatible with those plotted in
the figure.

Fluctuations

Since we opened our discussion of the average
properties of spectra with the density of energy levels,
it is natural to begin the discussion of fluctuations
with comments on the distribution of energy-level
spacings. (We repeat here that the fluctuation laws
are not system (or force) dependent in the way the
average quantities are, so that the laws are in this
sense more universal.) We recall that statements
about energy-level spacings are natural ways to com-
ment about the degeneracy of the spectrum. We
expect that if we include levels with many, many
different symmetry labels (spin and parity) in our
sample, then we are confronted with an ordered (in
energy) sequence of random numbers. Let x = S/S
= S/D, where S is the nearest-neighbor spacing and

Fig. 10. Plot of atomic radii taken from Ameri-
can Institute of Physics Handbook versus atomic
number. In a sense this is a susceptive property
of atoms. Note the gradual increase of the radius
as opposed to the Thomas-Fermi Z'1/a law. Also,
the rare gases have very large radii.
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Fig. 11. Summary of simple nearest-
neighbor spacing theory. The con-
trast between nondegenerate and the
highly degenerate cases is to be
noted. Wigner's surmise can be ob-
tained either from the argument in
the text or from the two hypotheses
of rotational form invariance and
independence for 2 X 2 matrices.

Fig. 12. Plot of the next-nearest-
neighbor spacing distribution P1(x)
as a function of x and also the
Poisson next-nearest-neighbor spac-
ing distribution x exp (— x). The
large repulsion effect near x — 0 is
very much in evidence.
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D is the mean distance between levels. Then, if
f(x)dx is the probability that, given a level at x = 0,
there is a level in dx at x, it is possible to show that
exp[—fox f(t)df\ is the probability that the interval
(0, x) is empty of levels; so we have for the spacing
probability distribution:

P{x)dx = exp [-/; fW,]f
where we have multiplied (infinitesimally) the prob-
abilities that dx contain a level and that the interval
(0, x) be empty. Equation (1) implies:

P(x) = f(x) exp [-/:• fii)dt

If fix) = const., then the
result for P(x) is:

(2)

(properly normalized)

P(x) = exp (-*) , (3)

which is the familiar Poisson distribution for the
nearest-neighbor spacing between an ordered se-
quence of random numbers. Perturbation theory for
real symmetric matrices indicates that f(x) is linear
in x for small x. If we assume this to be generally
true, letting fix) = (w/2)x, we find:

Pix) = Or/2)* exp [ - (4)

This is the famous surmise of Wigner. These results
are summarized in Fig. 11. Incidentally, (4) also
follows from the hypotheses of rotational invariance
and independence for 2 X 2 matrices and is in sur-
prisingly good agreement, as shown by explicit
Monte-Carlo machine computations and by the ana-

lytical methods of Gaudin and Mehta, with the
theoretical nearest-neighbor spacing distribution for
very large matrices.

We show in Fig. 12 the next-nearest-neighbor
spacing distribution P'-(x) and the corresponding
Poisson distribution x exp i~x). The former of these
is derived from the two hypotheses of rotational in-
variance and independence for 3 X 3 matrices.

In Fig. 13 we show nuclear level spacing data7 for
states of spin \ and even parity (Th232, U234, U236,
U238 targets with neutrons incident) in the left-hand
part of the figure. The solid curve is (4).

Next we come to the fluctuations of quantities
associated with instability, viz. the partial level
wddths. The simplest of such quantities is a particle
width of an autoionizing level. Since there is no
atomic data on autoionizing widths available, we
show, on the right-hand side of Fig. 13, nuclear
neutron-width data.7 The solid curve is half of a
simple Gaussian:

Piy) = (2/TT)1/2 exp i-f/2), (5)

which is a consequence of the assumption of rota-
tional invariance (representation independence) of
the theory. To derive this we recall that a width for
level X and channel c is given in terms of a reduced
width amplitude y\c as

rXc = 2 / W , (6)
where

(7)

Here, X\ is the level function, $c is the channel func-
tion, and the integral is (3A — 1)-dimensional with
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Fig. 13. Plots of experimen-
tal (points) and theoretical
(curves) spacing and neu-
tron-width distribution data7.
Agreement is seen to be quite
good.
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Fig. 14. Summary of the quantum-mechanical
Langevin equation of M. Namiki and the result-
ing Nyquist formula, a fluctuation-dissipation
theorem. Optical model, when used for very light
elements 16 represents dissipation without fluctu-
ation.

A the number of particles in the compound system.
Picking an orthonormal ''coordinate system" i/ ,̂ we
can expand X\ to give

(8)

in which the (7̂ M are the components of X\. Rota-
tional invariance means the a's are equally likely to
be positive or negative and are, for a vector space of
high enough dimension, most likely to be zero. Thus
(8) expresses the net displacement in a one-dimen-
sional random walk, giving immediately a Gaussian
distribution for yXc, or equivalently (5), in which y
is scaled such that (y2)^ = 1.

It is of course an immediate step to ask about
other widths. The nuclear total-fission width behaves

in a rather singular manner, since there is a collective-1
distortion-intermediate-state correlation among the
partial-fission widths. In contrast to an anticipated
multichannel behavior, the total-fission width fluc-i
tuates almost like a neutron width. Not much in-
formation is yet available on the partial-fission
widths associated with individual fragment pairs.

Both total and partial nuclear radiation widths
have been measured. The total radiation width is 1
found to be almost constant. On the other hand, the
partial radiation widths8 fluctuate as though the
radiative matrix element were a complex number
(two degrees of freedom). From time-reversal invari- j
ance arguments (Lloyd Theorem) it is known that
the matrix element must be real (as must a beta-
decay matrix element), so that some sort of special
structure in the partial widths is indicated.

Very little highly accurate atomic or molecular
radiation-width data is available at present. A pre-j
liminary examination of a recent compilation18 of
atomic radiation-width (transition = probability)
data indicates widely fluctuating widths. There is
every reason to make more accurate measurements
of these quantities, as well as of electron widths for
autoionizing states about which next to nothing is
known experimentally.

We now digress a moment to point out the connec-
lion between the neutron-width distribution and the
more familiar notions of Johnson noise in an elec-
trical system. It has been shown by Namiki9 that it
is possible to write a Langevin type of equation for
the Schrodinger equation. Such an equation is a
damped, stochastically forced wave equation. As a
consequence of this equation, a nuclear (or atomic)
Nyquist formula is obtained relating the spectrum
of the power transfer to the strength function. These
results are summarized in Fig. 14.

In Fig. 15 we show, among other things, the
imaginary part of the optical potential computed for
atomic argon10 (electrons incident on neutral argon).
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Fig. 15. Plots of Thomas-Fermi-Dirac (TFD)
potential and density 17 for neutral argon against
r/o<>. Density has been cut off smoothly at the
S-wave hydrogenic value Z"/ir at r = 0 to elim-
inate the usual r"3/2 singularity. This effect is
hardly noticeable on the plot but enters in a
critical way into calculation of the imaginary part
of the potential. The calculated imaginary part is
shown for various values of electron energy as-
suming a screening radius of atomic size. This
assumption appears wrong, and both W and the
electron strength function Te/D are probably an
order of magnitude or two too large. An electrical
polarizability must of course be included in the
real part of the potential as indicated.
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Fig. 16. Plots of the orbital and spin angular-
momentum distributions for neutral iron (Fel) 15.
Solid curves are the usual theoretical curves; the
single average ("moment of inertia") parameter
is indicated in the graphs.

The imaginary part is most likely overestimated by
one or two orders of magnitude since it will probably
not be compatible with the Ramsauer scattering
data. This indicates a probable overestimation of the
screened electron-electron cross section. Clearly, fur-
ther experiments are to be desired. Also extensions
of computations of W to atom-atom, atom-molecule,
and molecule-molecule scattering may prove to be
useful.

We have not yet mentioned correlations which
may exist. Present theories predict no correlation
between the eigenvalues and the eigenvector com-
ponents so that any correlation between spacings and
widths or spacings and expectation values (e.g., the
gyromagnetic ratios which we shall come to shortly)
are predicted to vanish. On the other hand, nonzero
spacing-spacing correlations and, at least in prin-
ciple, width-width correlations are predicted. The
adjacent nearest-neighbor spacing correlation coeffi-
cient is predicted to be about — 25% and the width
correlation coefficient is of the order of the negative
of the reciprocal of the dimension of the vector space
involved. This reciprocal is usually small, since the
dimension of the vector space under consideration
is usually large.

The status of the experimental evidence concern-
ing correlations is mixed. The width-width correla-
tions seem to be small (less than 10%) while the
spacing-spacing correlations are in rough correspond-
ence with the predicted anticorrelation. So far, the
width-spacing correlation found in the data is small.
This is consistent with the invariance hypothesis.

Atomic energy-level data are very convenient for
the study of angular-momentum distributions. In

Fig. 16 are shown the experimental results for neutral
iron (Fel). We have not discussed theories11 of the
average parameters in these distributions since no
complete theories exist, but the data indicate the
order of magnitude of the results that can be ex-
pected. The solid curves in the figure are simple
theoretically motivated (from some kind of rotator)
functions as indicated. Mainly, we view the angular-
momentum distribution as a preliminary to the gyro-
magnetic ratio distribution, and since LS coupling is
good for Fel, that atom affords an opportunity to
study the angular-momentum distribution.

The gyromagnetic ratio is an example of an expec-
tation value or of a "double-ended" quantity in the
sense of Fig. 4. The relevant equations are sum-
marized in Fig. 17. We see at once that the Lande
depends explicitly on L and 5 and that, for a complex
atom in which L and S are not good quantum num-
bers, a connection exists between ga (in the repre-
sentation a) and the Lande g. The relevant direction
cosine (eigenvector component) is the same sort of
component that enters into the partial widths in (8),
but, because of the double-ended character of an
expectation value, the structure of the equations is
different.

The first few moments of g are shown also in Fig. 17
in their connection to the moments of the Lande g's.
For high dimension, the dispersion of the actual g's
is reduced from that of the Lande g's by a factor
[2/(iV + 2)] if the state specified by the label a is
a random mixture of LS states.

In Fig. 18 is shown experimental data on the gyro-
magnetic ratios of the states of neutral osmium (Osl).
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Fig. 17. Summary of the gyromagnetic ratio equa-
tions. The Lande value is given along with its
connection to an arbitrary representation labelled
by a. Especially the dimensional "damping" fac-
tor 2/(N 2) in the gyromagnetic ratio dispersion
for randomly oriented a is very important.
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Fig. 18. Gyromagnetic ratio data 15 for neutral
atomic osmium (6sl). A plot of the gyromagnetic
ratio distribution for spin-two odd-parity states
is shown along with a Gaussian curve. The total
angular momentum distribution in osmium is also
shown. In addition, the first few moments of the
gyromagnetic ratio distributions for different to-
tal spin are plotted against total spin. There is
a significant third (odd) moment so that the
Gaussian is only roughly correct as a limiting
distribution.

Neutral osmium has a complex spectrum in which L
and S are not good quantum numbers. The figure
shows the g-distribution for states of odd parity and
a spin of two. In addition, the total angular-momen-
tum distribution, as well as the first three moments
of the g-distribution as a function of angular mo-
mentum, are shown. The decrease of the second and
third moments with increasing angular momentum
is evident. This can be ascribed to the dependence on
/ in the Lande g-value.
. We close our discussion with a few remarks on the

theoretical models for the fluctuations. Recalling
from Fig. 5 that time-reversal invariance implies real
matrix elements for the Hamiltonian H, we restrict
our attention to theories which are invariant against
orthogonal (real unitary) transformations in a vector
space of dimension .Y. If we also add the requirement
that the matrix elements of H be independently dis-

Fig. 19. Summary of underlying theory
for the form-invariant, independent
model of the fluctuations. This model
(Gaussian ensemble) when fed into
scheme of Fig. 4 leads to spacing, width,

FEBRUARY 1963 and expectation-value distributions.
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tributed, then there is an "if-and-only-if" theorem
based on the hypotheses of invariance and inde-
pendence which concludes that the distribution of //
must be of the form indicated in Fig. 19. From this
distribution all of the consequences we have men-
tioned for the eigenvalues (spacings of levels with the
same symmetry) and eigenvector components follow
in principle according to the hierarchy in Fig. 4.

In practice, extracting mathematical results has
proved to be very difficult when at all possible. The
work12 of Mehta and Gaudin as well as the complex
mathematical problems encountered by Dyson13 in
his work on circular ensembles show the nature of the
difficulties. Rosenzweig14 has shown how to meet
Dyson's objection to the nonuniform weighting of
the Gaussian ensemble summarized in Fig. 19 by
proposing a slightly different ensemble which be-
comes asymptotically identical to the Gaussian en-
semble as the dimension N of the vector space is in-
creased. In addition, many (not all—the single eigen-
value distributions are different) of the asymptotic
(large N) results for the circular ensemble of Dyson
are identical to those of the Gaussian ensemble, so
that there is in practice little distinction among the
mathematically solvable models, except in the way
in which the circular ensemble must ignore the width
and expectation value problem.

This latter problem of quantities derived from
eigenvectors is an important one, and therefore acts
in strong support of theories which induce a measure
directly on the (non-group-forming) Hamiltonian
matrices, with a consequent built-in prediction for
the eigenvectors as well as the eigenvalues. Since

H = SHDS~\

= SHBJ,
(9)

where 5 is an orthogonal matrix, 55 = 1, and Ho is
the diagonalized H, a small neighborhood dH of H
is related to a small neighborhood dS of S via the
commutator connection

dH = [dSS, ff], (10)
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The above experiment is associated with a program to

develop radiation cooled components for use in high energy

electron beam handling equipment. The apparatus shown is

a mock up of a system which utilizes photoconductive cells

to measure the temperature of a wheel rotating in a vacuum.

The engineer is testing a calibrating light source which will

enable the performance of a photoconductive cell to be

monitored periodically from a control console located a

considerable distance from equipment subject to extremely

intense ionizing radiation.

This experiment is just one of the many challenging

problems under investigation at High Voltage Engineering

Corporation. Engineers and Scientists are invited to investi-

gate career opportunities.
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Please contact Mr. Louis A. Ennis
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so that the parameterization of II is given in terms
of the parameterization of S (N(X — l)/2 param-
eters), and the N eigenvalues of H make up the total
of N(N + l)/2 parameters. This is the sort of meas-
ure introduced in the Gaussian ensemble. Rosen-
zweig's measure is, as has been stated, different, but
involves the Hamiltonian directly and yields the
same distributions for high-dimensional matrices.

In any event, since analytic work is so difficult, a
continuing resort to Monte-Carlo machine computa-
tions can be foreseen to explore different models for
the fluctuations. Especially, it may prove to be
interesting to relax the plus-minus symmetry of the
input matrix-element distributions and/or also their
independent character.

The entire problem of fusing the various fluctua-
tion ensembles with the usual statistical-mechanical
functions, energy, entropy, specific heat, etc., in
order to explore classes of systems as now permitted
by the "new" statistical mechanics, remains wide
open for effort. It is in this area that these various
ensembles may prove to be extremely useful in order
to gain insight into general properties of matter that
do not seem to depend strongly on the details of the
force laws but only on some rather general (one hopes
"statistical") features of the laws. Not only will the
usual point of view of statistical thermostatics be
recast, but also statistical thermodynamics (the
province of the Boltzmann equation and of the Pauli
master equation) will probably feel the impact of the
ensembles we have discussed. Again, because of the
analytical difficulty, machine computations should
be very helpful as a guide to the more fruitful direc-
tions for investigation.
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