STATISTICAL PROPERTIES OF

PECTRA

By C. E. Porter

HE purpose of this paper is to present a rapid
survey of the statistical properties of spectra,

using both atomic spectral data and nuclear
spectral data. In many cases, only one kind of rele-
vant data exists; for example, very little is known
about atomic-particle transition-probability data, so
in such must confine our attention fo
nuclear data. When both atomic and nuclear data
those data

areas Wi

are available, we have tried to select
which are usually not treated according to the general
approach of this paper. Throughout our discussion,
then, we will be mainly emphasizing analogies and
the manner of handling different sorts of data accord-
ing to the spirit of this paper.

Spectra

What are energy spectra? In this discussion we
shall always have in mind the energy spectra of a
many-nucleon nucleus or a many-electron atom (or
molecule), both of which are outstanding examples
of complex many-particle systems for which a sta-
tistical treatment is appropriate. In order to under-
stand what is meant by energy spectra, it is conveni-
ent to develop our discussion by comparison with
the more familiar many-planet solar system. In the
case of the [-lalrwl:tr_\' system the planets play a role
similar to the electrons in a complex atom with the
sun at the center taking the part of the nucleus.
Similarly it is now think of the
nucleons in a nucleus as though they move in acentral
ficld which could be compared to the gravitational

fashionable to

field of the sun, making the solar system analogy good
in a 4|l|.‘|]il.‘|li\'t- sense for both the atom and the nu
cleus. In the nuclear case, the attractive central field
in which the nucleons move is created completely by
the nucleons themselves, so that the fields created by
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the nucleons enter into the nuclear system in a more
complex way than is usually imagined as a first-
approximation picture of the solar system or of a
many-electron atom, but we shall ignore this compli-
cation for the present.

There are two kinds of orbits in the solar system,
those of the planets, which are bound orbits, and
of (noncyclic) comets, which traverse the solar system
in unbound orbits. A comet can thus be said to be
an unbound planet. These different orbits have differ-
ent total energies, and the different energy states
constitute the energy spectrum of the solar system.
The planetary spectrum is sketched in Fig. 1.

The energy spectrum of the solar system is con-
tinuous (note the shading in Fig. 1) and runs from
an energy of negative infinity for tightly bound
(planetary) orbits through zero energy making the
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Fig. 1. Spectrum of solar system. J.\'ﬂil!’lh“
broken energy scale. Shading emphasizes
the continuous character of the spectrum.
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transition to unbound (comet) orbits which may
have energies up to positive infinity (in principle)
us is indicated in Fig. 1. It should also be pointed out
that an unbound orbit can be thought of as a scatter-
ing orbit; ie., the comet is scattered by the solar
system.

For a wave-mechanical system (which the atomi
and nuclear systems are) only non-self-destructive
wave phenomena are allowed. This additional re-
quirement upsets the continuous character of the
spectrum, changing a typical energy spectrum into
a partly discrete, partly continuous spectrum. In a
more accurate sense, the spectrum remains continu-
ous but is modulated into more dense and less dense
countable (hence discrete) groups. Crudely speaking,
if 4 wave is not to be self-destructive, an integral
number of wavelengths must fit into the orbit of the
particle, and this is how the element of countability
or discreteness is introduced into the spectrum. The
spectra of two typical atoms, neutral aluminum
(All) and neutral mercury (Hgl), are shown in
Fig. 2.

First of all, we see that there is a ground state for
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Fig. 3. Summary of the characterization of a dis-
crete energy state. The total width of a nuclear
level includes the total radiation width, the neu-
tron width, ete., while that for an atomic level
includes a total radiation width and an electron
width. The usual energy-time uncertainty connec-
tion between width and lifetime holds, of course

the system at Ey which is bound by the hnil
energy [2y. Thus no infinitely tightly bound orbits
are allowed in the wave-me ||;1I|i1 al 5y stem. Near the
ground state, the spacing between the discrete levels
is typically rather large and decreases rapidly as the
unbound states are approached. The unbound dis
crete states are (in the nuclear spectrum at any rate)
VEry ( |ir-r|_\' Spa ed, and |||:'_\ eve |11|!.|.“_'~.' u\'l'l’|;|]| and
merge into an unresolvable continuum.

Of all of the states indicated in Fig. 2, only the
FEy can be -1=E}‘||-|:-1||_\' stable, (We
shall ignore beta-decay effects in this article.) All of

oround state

the excited IIH_IrIl_LI'IIIIIL'iI bound states are unstable
with respect to radiative decay (emission of light)
and the unbound excited states are unstable with
respect to the emission of ]l.ll'?il les (electrons in the
atom or nucleons or nucleon clusters in the nucleus)

as well as light emission. (By definition any unbound

particle can run away like a comel

Each of the excited states has an intensily profile
similar to that sketched in Fie. 3. The total width 1
of the state 1s indicated as well as the energy position

I 111_”11_' state. Also ||||i||||45 out m the Nerure art 1 hi
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Fig. 4. The hierarchy of a theoretical calculation
is indicated with the Hamiltonian of the system
as a starting point. It is important to note that
spacings, widths, and expectation values all fol
low from hypotheses with respect to H. The major
statistical difference between the “single-ended”
character of a width and the “double-ended”
character of an expectation value is also indicated

connections between width I', transition probability
P, and mean life 7 and the usual time-energy uncer-
tainty relation. It is emphasized in the figure that
the discreteness of a spectrum is a statistical prop
erty, since the mean width must be much less than
the mean Spa ineg between states in order that |]H'_\
be countable.

It is perhaps worth stressing that models of spectra
are almost always stable (e.g., even the usual models
of the hydrogen atom). This is a property only of
models and not of real spectra.

We now sketch briefly the theoretical source of the
properties of spectra. In Fig. 4 the usual connections
are indicated. The 1'Iil'|'![r'~ E and the wave functions
Y of the states come from the Hamiltonian H of the
system via the Schrodinger equation. These in turn
give the energy-level spacings S, the level widths T,
and expectation values <> of a relevant operator
0. It is -'lll]r!:.l~i.-'.l-|1 in the figure that the statistical
propert 1es of the widths and Xpet tation values differ
because of the off-diagonal and diagonal character of
the matrix elements involved

['he concept of Ilt_‘_’l'lt:']'izl}' 15 VELy iIHEIIH'l:IIII for
us. We must now take notice of the additional labels
on the energy levels in Fig. 2. These labels are associ-
ated with symmetry properties of the Hamiltonian
H of the system AS

labels are the total

mdicated in Fig. 5, 1}.'inil.L'|
angular momentum J, the parity
total

and the

. the total orbital angular momentum L, the

in angular momentum S, the ene rgy E,

ssihility of making the matrix elements of thi

Hamiltonian H real. Each of these additional con-
stants of the motion is associated with a symmetry
transformation as shown in the figure. In particular,
the reality of the matrix elements of H is & conse-
quence of the assumed time reversal invariance of
the Hamiltonian.

Two levels which coine ide in Cnergy are said to be
degenerate. The general feature of degeneracy is that
energy levels with the same symmelry labels do not
in general coincide, L.e., are not degenerate. Thus, il
is said that levels of the same symmetry “repel” each
other. Another way to say this is that the nearest-
neighbor .--[r;llitl;_{ between two levels of the same
symmetry does not vanish. We will discuss statistical
degeneracy later in terms of energy-level spacing
statistics.

Average Properties of Spectra

The average |l|'u[n'rtir‘~ of spectra are much maore
complicated to present than the fluctuations. The
reason for this is that the fluctuation laws are inde-
]u'luli-lﬂ to a good ap] roximation of the f\llt'l'iﬁl' SYs-
tem (and hence the sped ific forces ]:t'il'i;_{ considered)
much in the same way that the well-known Gaussian
distribution arises in many different connections in
practice. (The physical significance of the averag
values may b

fluctuation law is the same.)

I|11iT:: different, even f]i(lllj_’il the

The basic average property is the mean level den-
sity. A very complete review article on this subject
has been written by Torleif Ericson.! We content
ourselves here with a typical plot of some atomic
energy-level data (Ericson discusses only nuclear
data when he refers to experiments) to indicate how
such data are usually handled. In Fig. 6 are plotted
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Fig. 5. A list ot typical symmetry labels i
given. For later reference, we emphasize the
association between matrix-element reality and
time-reversal invariance.
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Fig. 6. Upper part of figure shows cumula- oL
tive energy-level distribution data® for even 013 2 g s
and odd parity states of neutral osmium
(O0sI). Probably missing are even parity lev- Olg 5 586 100 7 7 7 el

els in the 30 000 to 50 000 cm™ range. Lower
part of figure shows ratio of two upper
curves, giving a typical average parity sta-
tistic when smoothed. Note that there are
parity fluctuations at low excitation, Com-
plete theories of these effects are lacking.

in the top part of the figure the cumulative number

of levels,
E
f ple)de,
0

as a function of excitation energy E for neutral
atomic osmium (OsI) as obtained by van Kleef* As
each new level appears, a unit vertical step is taken
in the histogram. Note that the levels have been
separated according to parity and that there is a
definite indication that a number of even parity
levels have been missed between 30 000 and 50 000
cm~'. (The probable missing of levels was pointed
out to the writer by R. E. Trees.) The steep rise of
the odd-parity level density resembles the typical
exponential rise of theoretical level densities. Of
course, the actual level density is the slope of the
curve.

In the lower part of Fig. 6 is plotted the ratio of
the total number of positive parity levels to the total
number of negative parity levels. There are notice-
able fluctuations in the plot (which we will not dis-
cuss in this article), but the ratio eventually settles
down to a number close to one.

For the moment, we omit discussion of average
expectation values (we will come to gyromagnetic
ratios when we discuss Huctuations) and turn our
attention to average quantities associated with in-
stability. The first of these is the strength function (a
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Fig, 7. Experimental (points) and theoretical (curves)
S-wave strength functions (conductive property of spectra).
The theoretical computations are explained in the text.
(Figure made available to the writer by J. A. Harvey.)

conductive property of spectra), which can be defined
for any type of channel (electron, gamma ray, fission,
etc.), but which has mainly been measured for neu-
trons incident on nuclei. (It would be very interesting
to know the electron strength function of neutral or
ionized atoms.) In Fig. 7 we show the current data
along with theoretical calculations for S-wave neu-
trons. The label FPW (Campbell, Feshbach, Porter,
and Weisskopf®) stands for a potential of the Eckart
form with

R=1.154'"% 4 0.4 fermi,
= 52 MeV,

WV =3 MeV,

d = 0.52 fermi,

while the initials CWE (Chase, Wilets, and Ed-
monds?) stand for the parameters (with a trapezoidal
potential)

R = 1.35 A5 fermi,

V = 44 MeV,

[IF = 2.2 MeV,

A = 2.2 fermi = 90% — 109 distance,

g = distortion taken from [FE2 transition data
(variable from nucleus to nucleus).

Note that the black nucleus value for diffuse sur-

face potentials differs from that for sharp surface
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(susceptive property of spectra). The theoreti-

cal computations correspond to those in Fig, 7.
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potentials. Fig. 8 shows similar results for fl
P-wave strength function at low energies. The ¢
lated curves are taken from Kreuger and Margolis
The parameters used differ from the usual sets, ¢
cially since they find a need for a rather large
orbit coupling. Recently, relevant computations
strength functions have been made by Perey a
Buck® using a4 nonlocal optical potential. These &
thors are able to achieve an unusually good inte
polation through the experimental data with n
explicit energy dependence in their parameters.

The other type of quantity associated with insta:
hility is the susceptive property or “‘potential” scatter
ing length R’. Data and numerical computation of
this quantity are shown in Fig. 9. The references in
the figure follow the same pattern as those in Fig. 7.

In Fig. 10 are plotted atomic radii as taken from
the American Institute of Physics Handbook. In a
sense, these radii represent a susceptive property of
atoms. There are a few notable features in this plot.
First of all, the over-all trend of the radius is an
increase, not a variation of Z='% as predicted by the
Thomas-Fermi model of the atom. Secondly, the rare
gases have unusually large radii. Unfortunately, the
AIP Handbook does not describe the experiments on
which these radii are based. In any event, there
seems to be every motivation for further measure-
ments of radii by electron scattering from atoms to
see if such radii are compatible with those plotted in
the hgure.

Fluctuations

Since we opened our discussion of the average
properties of spectra with the density of energy levels,
it is natural to begin the discussion of fluctuations
with comments on the distribution of energy-level
spacings. (We repeat here that the fluctuation laws
are not system (or force) dependent in the way the
average quantities are, so that the laws are in this
sense more universal.) We recall that statements
about energy-level spacings are natural ways to com-
ment about the degeneracy of the spectrum. We
expect that if we include levels with many, many
different symmetry labels (spin and parity) in our
sample, then we are confronted with an ordered (in
energy) sequence of random numbers. Let x = §/
= S/D, where § is the nearest-neighbor spacing and

Fig. 10. Plot of atomic radii taken from Ameri-
can Institute of Physics Handbook versus atomic
number. In a sense this is a susceptive property
of atoms, Note the gradual increase of the radius
as opposed to the Thomas-Fermi Z7* law. Also,
the rare gases have very large radii,
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D is the mean distance between levels. Then, if
f(x)dx is the [\rrah:lhi]ily that, given a level at x+ = 0,
there is a level in dv at x, it is possible to show that
t')[}:[—_/'..' IHHN"(_: is the probability that the interval
(0, x) is empty of levels: so we have for the Spi ng
probability distribution:

P(x)dx = exp [— / .f':f]n"f} [(x)dx, (1)

where we have multiplied (infinitesimally) the prob-
abilities that dx contain a level and that the interval
(0, x) be empty. Equation (1) implies:

Rlx) = fi(x)exp [— / : _,fl.f'ld.’:| :

If f(x) = const., then the (properly normalized)
result for P(x) is:

all

Plx)= expii—xd, (3)

which is the familiar Poisson distribution for the
llt‘IH'L‘rii-!'IL‘i}_',hht_ll' .a']nu'irlf.i between an ordered se-
quence of random numbers. Perturbation theory for
real symmetric matrices indicates that f(x) is linear
in & for small x. If we assume this to be generally
true, letting f(x) = (w/2)x, we find:

B} = (7r, "N exp [ — (7 -I-.l'l“_| (<)
This is the famous surmise of Wigner. These results
are summarized in Fig. 11, Incidentally, (4) also
follows from the hypotheses of rotational invariance
and independence for 2 X 2 matrices and is in sur-
prisingly good agreement, as shown by explicit
Monte-Carlo machine computations and by the ana-

Fig. 13. Plots of experimen-
tal (points) and theoretical
(curves) spacing and neu-
tron-width distribution data’
Agreement 1s seen to be quite
enod
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x=5/0

Ivtical methods of Gaudin and Mehta, with the
theoretical nearest-neighbor S ing distribution for
very large matrices.

\\.:' |'iL."_ 1_), ]]Ii
spacing distribution £'(x)

show In next-nearest-neighbor
and '||||_ Hl['l'r=!|l}||l|i||‘_’
Poisson distribution x exp (—x). The former of thes:
1S 1|t'['i\'1_'ll from the two |1}'[r:1|}|1'~1-~ of rotational in-
variance and independence for 3 X 3 matrices.

In Fig. 13 we show nuclear level spacing data® for
states of spin 3 and even parity (Th*#, U 1=
U5 targets with neutrons incident) in the left-hand
part of the figure. The solid curve 1s (4).

Next the

associated with instability, viz.
widths. The simplest of such quantities is a particle

we come fo fluctuations of quantities

the partial level

width of an autoionizing level. Since there 15 no
widths .'I\'.'li].'l]!lll', W
13,
15 |III|1. of a

atomic data on autolonizing

show, on the right-hand side of Fig. nuclear
neutron-width data.” The solid curve

simple Gaussian:

f'r_'ri = (2 rrfll"'n-\.|l (—=y/2), (Re ]

which is a consequence of the assumption of rota
tional invariance (representation independence) of
the theory. To derive this we recall that a width for
level A and channel ¢ is given in terms of a reduced
width amplitude y,. as

Cye = 2P0 (6)

where
Here, Xy is the level function, @, is the channel fun

tion, and the integral is (3.1 1)-dimensional with
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Fig. 14, Summary of the quantum-mechanical

Langevin equation of M. Namiki and the result-
ine Nvquist formula, a fluctuation-dissipation
theorem. Optical model, when used for very light
elements 18 represents dissipation without fluctu
ation,

A the number of particles in the compound system.
Picking an orthonormal “‘coordinate system™ ., wi
can 1_'\||.1I!|| .\-‘, to givi

M : iy / Y budS, (&)

in which the ay, are the components of X,. Rota-
tional invariance means the a's are equally likely fo
be positive or negative and are, for a vector space of
high enough dimension, most likely to be zero. Thus
(8) expresses the net displacement in a one-dimen-
sional random walk, giving immediately a Gaussian

distribution for y,., or equivalently (5), in which ¥

is scaled such that (v*),. = 1.
[t is of course an immediate step to ask about
other widths. The nuclear total-fission width behaves

{ ARGON

15 [ % .o IN NUMBER /03

Vet ] S-wave hydrogenic value Z%/x at r=20 to elim=

R ] ; _“"V"L'.’ 1 inate the usual »** singularity. This effect 18
dﬂlﬁjﬂr‘n”j I 1* [‘_|-‘w|-:,:l POLARIZABILITY i. h:l_["_“_\' "“”"_l':l[}ll‘. on l}'}l.‘ [JIUl but enters in &
I v 380, 2| critical way into calculation of the imaginary part
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in a rather singular manner, since there is a collectives
distortion-infermediate-state correlation among th
partial-fission widths. In contrast to an anticipated
multichannel behavior, the total-fission width flugs
fuates almost like a neutron width. Not much in=
{ormation is yet available on the partial-fission
widths associated with individual fragment pairs.

Both total and partial nuclear radiation widths
have been measured. The total radiation width 1§
found to be almost constant, On the other hand, the
partial radiation widths® fluctuate as though the
radiative matrix element were a complex number
(two degrees of freedom). From time-reversal invari=
ance arguments (Lloyd Theorem) it is known that
the matrix element must be real (as must a beta-
decay matrix element), so that some sort of special
structure in the partial widths is indicated.

Very little highly accurate atomic or molecular
radiation-width data is available at present. A pre
liminary examination of a recent compilation’ of
atomic radiation-width (transition = probability)
data indicates widely fluctuating widths. There i§
every reason Lo make more accurate measurements
of these quantities, as well as of electron widths for
autoionizing states about which next to nothing i§
known experimentally.

We now digress a moment to point out the connee-
tion between the neutron-width distribution and the
more familiar notions of Johnson noise in an elec=
trical system. It has been shown by Namiki® that it
is possible to write a Langevin type of equation forf
the Schrodinger equation. Such an equation 15 @
damped, stochastically forced wave equation. As @
consequence of this equation, a nuclear (or atomic)
Nyquist formula is obtained relating the spectrum:
of the power transfer to the strength function. Thesé
results are summarized in Fig. 14,

In Fig. 15 we show, among other things, the
imaginary part of the optical potential computed for
atomic argon' (electrons incident on neutral argon)s

Fig. 15. Plots of Thomas-Fermi-Dirac (TFD)
potential and density 17 for neutral argon against
r/as. Density has been cut off smoothly at the

of the potential, The calculated imaginary part is
shown for various values of electron energy as-
suming a screening radius of atomic size. This
assumption appears wrong, and both W and the
electron strength function I'./D are probably an
order of magnitude or two too large. An electrical
polarizability must of course be included in the
real part of the potential as indicated.
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The imaginary part is most likely overestimated by
one or [\\llill‘lll'1'~ H!. Iﬂil]JI'l“'l!l]l' -ilil: i! \\i” |l|'lr]l.'l]?i'\'
not be compatible with the Ramsauer scattering
dati. This indicates a probable overestimation of the
SCTrecn¢ 1! clectron-electron cross sec {1omn. (\ll'.'lr]'\'. fur-
ther L\1H'l"IlTIl'I]1= are to be desired. Also extensions
of computations of 1" to atom-atom, atom-molecule,
and molecule-molecule scattering may prove to be

useful.
We have not yet mentioned correlations which
miay exist. Present theories predict no correlation

between the eigenvalues and the eigenvector com-
ponents so that any correlation between spacings and
widths or spacings and expectation values (e.g., the
EVTOmd g tic ratios which we shall come to ~1il|ri|_\"
are predicted to vanish. On the other hand, nonzero
spacing-spacing correlations and, at least in prin-
Ii['|l', width-width correlations are ll[':'rhlll'i|. The
adjacent nearest-neighbor spacing correlation coefh-
cient is predicted to be about —259% and the width
correlation coefficient is of the order of the negative
of the red ii.ru. 4l of the dimension of the vector space
involved. This reciprocal is usually small; since the
dimension of the vector Space under consideration
is usually large.

] |I| stalus Ul. the EX] rimental ¢ \'Ml nee concern-
ing correlations is mixed. The width-width correla-
to b than 109%)

-nacing-spacing correlations are in rough correspond-
| |

flons seem small (less while the

ence with the predicted anticorrelation. So far, the
vidth-snacine correlation found in the data 1s small
| 111S 15 consistent with the mvanance ||_\']m\h|'~5-‘

\tomic enerev-level data are very convenent for

he study of angular-momentum distributions. In

[7ig, 16 are shown the experimental results for neutral
iron (Fel). We have not discussed theories' of the
average parameters in these distributions since 1o
complete theories exist, but the data indicate the
order of magnitude of the results that can be ex-
pected. The solid curves in the figure are simple
theoreti :\|1_\' motivated (from some kind of rotator)
functions as indicated. Mainly, we view the angular-
momentum distribution as a preliminary to the gyro-
magnetic ratio distribution, and since LS coupling is
vood for Fel, that atom affords an opportunity te
study the angular-momentum distribution.

The gyromagnetic ratio is an example of an expec-
tation value or of a “double-ended™ quantity in the
sense of Fig, 4. The relevant equations are sum-
marized in Fig, 17. We see at once that the Landé g
ih'prluia :"\]r'lii Il'I_\' on L and S and that, for a lfllT]illl'X
atom in which L and .S are not good quantum num-
bers, a connection exists between g, (in the repre-
sentation ) and the Landé ¢g. The relevant direction
cosine (elgenvector component) is the same sort of
component that enters into the part 1al widths in (8),
but, because of the double-ended character of an
expectation value, the structure of the equations is
different.

The first few moments of g are shown also in Fig. 17
in their connection to the moments of the Landé g's.
For high dimension, the dispersion of the actual g's
15 reduced from that of the Landé _{;‘.\ |;_\‘ a factor
[2/(N 4+ 2)] if the state specified by the label a is
a random mixture of L.S states.

In Fig. 18 is shown experimental data on the gyro-
magnetic ratios of the states of neutral osmium (OsI).
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Fig. 17. Summary of the gyromagnetic ratio equa-
tions, The Landé value is given along with its
connection to an arbitrary representation labelled
by a. Especially the dimensional “damping” fac-
/(N 2) in the gyromagnetic ratio dispersion
lor randomly oriented « is very important.
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Fig. 1§ Gyromagnetic ratio data1® for neutral
atomic osmium (0OsI). A plot of the gyromagnetic
ratio distribution for spin-two odd-parity states
is shown along with a Gaussian curve. The total
angular momentum distribution in osmium is also
shown, In addition, the first few moments of the
gvromagnetic ratio distributions for different to-
tal spin are plotted against total spin. There is
a significant third (odd) moment so that the
Gaussian is only roughly correct as a limiting
distribution.

Neutral osmium has a complex spectrum in which L
and § are not good quantum numbers. The figure
shows the g-distribution for states of odd parity and
a spin of two. In addition, the total angular-momen-
tum distribution, as well as the first three moments
of the g-distribution as a function of angular mo-
mentum, are shown. The decrease of the second and
third moments with increasing angular momentum
is evident. This can be ascribed to the dependence on
J in the Landé g-value.

" We close our discussion with a few remarks on the
theoretical models for the fAuctuations. Recalling
from Fig. 5 that time-reversal invariance implies real
matrix elements for the Hamiltonian H, we restrict
our attention to theories which are invariant against
orthogonal (real unitary) transformations in a vector
space of dimension V. If we also add the requirement

tributed, then there is an theorem

based on the |1_\'||n|]!1'-t_'~. ol mmvariance and inde-

“t=and-onlyv-d

pendence which concludes that the distribution of 71
must he of the form indicated n Fig, 19
distribution all of the consequences we have men-

FFrom this

tioned for the cigenvalues (spacings of levels with the
same symmetry) and cigenvector components follow
in principle according to the hierarchy in Fig. 4.

In practice, extracting mathematical results his
proved to be very difficult when at all possible. The
work! of Mehta and Gaudin as well as the complex
mathematical problems encountered by Dyson™ in
his work on circular ensembles show the nature of the
difficulties. Rosenzweig' has shown how to meel
Dyson’s objection to the nonuniform weighting of
the Gaussian ensemble summarized in Fig. 19 by
proposing a slightly different ensemble which be-
comes asymptotically identical to the Gaussian en-
semble as the dimension V' of the vector space is in-
creased. In addition, many (not all
value distributions are different) of the asymptoti

the single elgen-

(large ) results for the circular ensemble of Dyson
are identical to those of the Gaussian ensemble, so
that there is in practice little distinction among the
mathematically solvable models, except in the way
in which the circular ensemble must ignore the width
and expectation value problem.

This latter problem of quantities derived [rom
elgenvectors is an important one, and therefore acts
in strong support of theories which induce a measure
directly on the (non-group-forming) Hamiltonian
maftrices, with a consequent built-in prediction for
the eigenvectors as well as the eigenvalues. Since

H=E R H RSk
(9)
= SHpS, :

where S is an orthogonal matrix, SS =1, and Hp is
the diagonalized H, a small neighborhood dH of H
is related to a small neighborhood dS of S via the
commutator connection

dH = [dSS, H], (10)
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that the matrix elements of H be independently dis-

Fig. 19, Summary of underlyving theory
for the form-invariant, independent
model of the fuctuations, This model
(Gaussian ensemble) when fed into
scheme of Fig, 4 leads to spacing, width,
and  expectation-value  distributions.
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so that the parameterization of H is given in lerms
of the parameterization of S (N(N — 1)/2 param-
eters), and the N eigenvalues of H make up the totyl
of N(N + 1)/2 parameters. This is the sort of meus-
ure introduced in the Gaussian ensemble. Rosen-
zweig’s measure is, as has been stated, different, hu
involves the Hamiltonian directly and yields the
same distributions for high-dimensional matrices,

In any event, since analytic work is so difficult, 4
continuing resort to Monte-Carlo machine computi-
tions can be foreseen to explore different models for
the fluctuations, Especially, it may prove to b
interesting 1o relax the plus-minus symmetry of the
input matrix-element distributions and/or also their
independent character.

The entire problem of fusing the various fluctua-
tion ensembles with the usual statistical-mechanical
functions, energy, entropy, specific heat, etc., in
order to L—\])]t_ln‘ classes of syslems as now 1:t_'rmi'l1t'l']
by the “new” statistical mechanics, remains wide
open for effort. Tt is in this area that these various
ensembles may prove to be extremely useful in order

to gain insight into general properties of matter thal
do not seem to depend strongly on the details of the
force laws but only on some rather general (one hopes
“statistical”) features of the laws. Not only will the
usual point of view of statistical thermostatics be
recast, but also statistical thermodynamics (the
province of the Boltzmann equation and of the Pauli

The above experiment is associated with a program to
develop radiation cooled components-for use in high energy
electron beam handling equipment. The apparatus shown is
a mock up of a system which utilizes photoconductive cells

to measure the temperature of a wheel rotating in a vacuum y : 3 g
master equation) will probably feel the impact of the

ensembles we have discussed. Again, because of the
analytical difficulty, machine computations should
be very helpful as a guide to the more fruitful direc-

The engineer is testing a calibrating light source which will
enable the performance of a photoconductive cell to be
monitored periodically from a control console located a
considerable distance from equipment subject to extremely tions for investigation.
intense ionizing radiation
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