All of part two is devoted to the performance of aircraft regardless of the mode of propulsion in quasisteady flight. The final and third part treats of nonsteady flight and includes the performance of hypervelocity vehicles and multistage rockets. Except for one short chapter on the equations of motion for flight over a spherical earth, the remainder of the book is concerned only with motion over a flat earth.

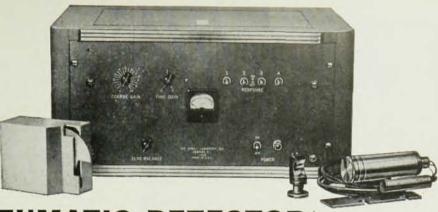
Although a knowledge of vectors and matrices is assumed at the beginning of part one in order to set up the equations of motion, a knowledge of these disciplines is not needed in parts two and three. By sticking to fundamental techniques and analytical solutions, the author has emphasized understanding of the phenomena rather than considering numerous specific configurations. There are many exercises, plenty of references, and excellent figures, all combining to make this a good introduction to flight performance.

The Inspiration of Science. By Sir George Thomson. 150 pp. Oxford Univ. Press, New York, 1962. \$4.00. Reviewed by L. Marton, National Bureau of Standards.

T is a truism that great British scientists are past masters in the popular presentations of their subjects, and this truism is once again proven by Sir George's recent book. In it, Sir George attempts to explain to the intelligent layman what science is trying to do, what scientists are doing to accomplish the scientific tasks, how certain discoveries were made, and the tactics of experiment. The necessary physics background is clearly outlined and documented with very good examples. A few biographical sketches, in which the author scrupulously uses only examples of dead scientists, illustrate the presentation. The presentation is both clear and vivid. The book can be highly recommended to all who at some time, must present, in a popular manner, the subject of their researches and, if we define the audience in this manner, then almost every physicist should be obliged to read it. It is, at

Sir George Thomson

the same time, not only an introduction into science but a very thought-provoking book, and I would like to present here at least a couple of the ideas which came to mind while reading it.


First, there is the question: For whom is the book written? The usual explanation that it is for the intelligent layman is somewhat questionable. Who is this "intelligent layman" for whom so many good books have been written. Does he exist, or is he a figment of the imagination? After discussing this question with several friends. I am quite ready to voice the common opinion that the "intelligent layman" does not exist. Who then is the reader of such volumes? Well, the first category is the one already mentioned, that of scientists who wish to learn how to present their own subject in a more-or-less popular fashion. The second category is the budding scientist who wants an introduction at a relatively simple level. The third group is that of scientists in other fields who wish to augment their limited knowledge of the field by easy reading, which is not encumbered by too much detail or difficult symbolism. Can these three groups, who comprise the major reading public of these books, be considered as "intelligent lavmen"?

These remarks are not to be considered a criticism of the book; they merely constitute a request for clarification—an attempt to avoid "kidding" ourselves. It is quite obvious that the exchange of designation of the public does not make the book less necessary. It is still needed, in fact, may be more needed once we know for whom it is written.

My second comment concerns the technique of presentation. Sir George has followed time-honored methods in which the main idea emerges from a mass of insignificant detail. As I said, this is the time-honored practice of presenting the emergence of scientific ideas and if I am using this example for expressing a somewhat discordant view, it is not a criticism of the present book at all. I do recognize that the main scientific ideas form a skeleton which holds the whole body of physics or chemistry together, but that the skeleton is useless without all the little cells which form the body. One day I would like to see an entirely different type of popular presentation which would trace the emergence of the certain scientific facts out of the very minor contributions. In fact, it would be rather nice to have for once a book written about the accomplishments of the very minor scientist who may not have contributed more than a very insignificant element to the total body of science. But in using the example of this minor scientist, once could show the motivations of the scientist, the process by which he obtained his results, and how an unsuccessful man can find inspiration in his very minor accomplishments. If he is a good scientist, he knows what he did is somewhat insignificant, but he still feels satisfied that he could contribute something to this wonderful body of knowledge which he calls science.

I would also like to express the hope that Sir George could be persuaded to write such a book. The present

A Superior Detector for Infra-Red Spectroscopy

GOLAY PNEUMATIC DETECTOR*

Among the characteristics that render the Golay Detector superior to other types of detectors for use in infra-red spectroscopy

- 1. An effective sensitive area 32" in diameter.
- 2. Sensitivity of 6 x 10-11 watts RMS-ENI when used with "chopped beam" method and with recording time constant of 1.6 second.
- *Fundamental and experimental aspects of this detector are discussed in the following publications: Rev. Sci. Inst. 18, 347 and 357 ('47); ibid. 20, 816 ('49); Proc. IRE 40, 1161 ('52).

3. Uniform sensitivity from the ultraviolet through the visible and the entire infra-red, and up to the micro-

4. Improved, drift-free, A. C. operated amplifier with step gain controls and four response periods.

Write for **EPLAB Bulletin** No. 10

THE EPPLEY LABORATORY, INC.

SCIENTIFIC INSTRUMENTS

10 Sheffield Ave. • Newport • Rhode Island •

A constant inventory of at least 2,000 liters of liquid helium assures prompt and reliable delivery . . . air transport for overnight service anywhere in the U.S.A.

A staff of highly experienced cryogenic engineers is capable of solving your low temperature problems. Call or write us regarding our consulting service on Cryogenic Systems De-

In addition to liquid helium . . . helium gas and liquid hydrogen are also available.

Dewars with large apertures are available on a rental basis for low temperature experiments.

GARDNER CRYOGENICS CORPORATION

142 William Street, Hightstown, N. J. Phone 448-3373 • Area Code 609 Announcing . . .

a new Slater book

QUANTUM THEORY OF MOLECULES AND SOLIDS, Vol. 1

Electronic Structure of Molecules

By JOHN C. SLATER, Massachusetts Institute of Technology. International Series in Pure and Applied Physics. Available in January, 1963.

In this timely work the author gives the most up-to-date treatment available of the rapidly changing field of the electronic structure of molecules, sometimes called quantum chemistry or molecular quantum mechanics. This is the first volume of a multi-volume series which will cover in an advanced treatment the entire field of modern solid state theory. The present volume covers the theory of the relatively simple molecules for which fairly complete theoretical discussions are available. The author has tried to develop the general methods of handling molecular theory, including the nature of the chemical bond and the symmetry of molecules, including a thorough discussion of group theory.

other important Slater books . . .

INTRODUCTION TO CHEMICAL PHYSICS \$10.00 MODERN PHYSICS \$ 7.95

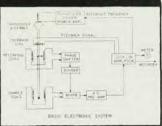
QUANTUM THEORY OF ATOMIC STRUCTURE, Vol. I

QUANTUM THEORY OF ATOMIC STRUCTURE, Vol. II QUANTUM THEORY OF MATTER \$11.00 \$13.00 \$ 8.95

send for your on-approval copies now

McGRAW-HILL BOOK COMPANY 330 West 42nd Street

New York 36, N. Y.


VIBRATING SAMPLE Magnetometer

FOR MEASURING

MAGNETIC MOMENTS

of Solids, Liquids & Gases

First commercially available Foner* type Vibrating Sample Magnetometer. This precision research instrument vibrates a sample in a relatively uniform magnetic field in a direction

perpendicular to the field. The AC signal produced by the moving sample is detected and analyzed by associated electronic systems. The Magnetometer is versatile and sensitive, and can be used with any conventional laboratory electromagnet.

A wide range of magnetic moments can be precisely measured over an extended range of temperature, field and crystallographic orientation. Errors are minimized. Calibration is simple. Stability is high. Permanent or induced magnetic moments can be measured and the orientation of the magnetic moment vector can be determined for any direction in space. Magnetic moment measurements of Superconductors, and Ferri-, Para-, Ferro-, Dia-, Antiferro-, and Meta-magnetic materials have been made with this system. Custom built to order. Several optional features such as dewars, ovens, recorders, and special-purpose coil assemblies are available. Your inquiries on specific magnetic measurement problems are invited.

*Manufactured exclusively by PAR under license in U.S. Patent No. 2,946,948.

Pertinent Specifications

DIFFERENTIAL SENSITIVITY: Change in magnetic moment of 5 x 10^{-4} to 5 x 10^{-5} emu corresponding to change in magnetic susceptibility of 5 x 10^{-8} to 5 x 10^{-9} cgs for 1 gram sample at 10^4 gauss.

STABILITY: Stability of output signal better than 1 part in 104/day for fixed coil geometry.

ABSOLUTE ACCURACY: Better than 2%.

PRICE: By quotation only. Approximately \$8,800 for basic system.

Write for Bulletin 106

PRINCETON APPLIED RESEARCH CORP. BOX 565, PRINCETON, N. J. one and several other of his books amply show how masterfully the subject could be handled by him.

La Poussière cosmique. Les Milieux interplanétaire, interstellaire et intergalactique. By A. Dauvillier. 207 pp. Masson et Cie, Paris, 1961. 25 NF. Reviewed by E. J. Öpik, University of Maryland.

THE author of the book has published some essays in cosmogony. Not having seen these works before, this reviewer decided to start with the book on cosmic dust, one of his own subjects. The disappointment was complete. After reading the first 40 pages, and a rapid perusal of another 50, the numberless misstatements convinced the reviewer that further reading was useless.

The most flagrant example is on pp. 47 (Fig. 5) and 48, where Phobos, the inner satellite of Mars, is represented as having retrograde motion, opposite to the sense of rotation of the planet and that of the other satellite, Deimos. This serves some of the author's cosmogonic speculations, but is pure invention.

Some other pearls; on p. 11, in the first introductory paragraph of the book, gas pressure depends on density only; on p. 12, Phobos (the retrograde!) is said to be a cloud of small particles (what about tidal disruption by Mars?); on pp. 12 and 88, comets are said to be strongly influenced by planetary perturbations, by virtue of their small masses ("de par leur faible mass", thus Newton amended); on p. 15, solar wind is rejected as the cause of repulsive forces in comet tails because it would blow away the planetary atmospheres; on p. 72, to avoid tidal breakup of a solid body inside Jupiter's Roche's limit, Sir Harold Jeffereys' theory is quoted as requiring the diameter to exceed 400 km, whereas it is just the opposite, only small bodies being able to maintain their integrity by cohesion; on p. 80, 1020 molecules per cm3 are said to yield a density of 10-13 gem-3. This may suffice.

Mathematics for the Physical Sciences. By Herbert S. Wilf. 284 pp. John Wiley & Sons, Inc., New York, 1962. \$7.95. Reviewed by Peter L. Balise, University of Washington.

A TEACHER of applied mathematics in science or engineering may choose from a rapidly increasing number of texts, all covering about the same topics, emphasizing applications and minimizing rigor, and differing mostly in writing style (which of course can be a vital difference). Although Professor Wilf's book also deals with the subjects common to these texts, it is refreshingly different in a way that will make it attractive for some teachers and unusable for others.

Physical applications are not mentioned, and the approach is rigorous, but the exposition is obviously aimed toward applications, giving the text a clarity for nonmathematicians reminiscent of Ralston and Wilf's Mathematical Methods for Digital Computers. There is some discussion of numerical methods, but more prominent is the author's attention to mathematically