Objective Tests—

By Frank J. Fornoff

Test Development Division Educational Testing Service, Princeton, N. J. ALL Bad?

AM one of those people whose identity is hidden by the letters—ETS—which Dr. Banesh Hoffmann has attacked with such determination. My responsibility, shared directly with two colleagues and indirectly with many more, is the preparation of science tests. I have a doctorate in chemistry from the Ohio State University, and I spent a postdoctoral year at the University of California. I have been on the faculties of three good universities, Lehigh, Kansas State, and Rutgers, but I must admit that there are many things that I do not know. Contrary to Dr. Hoffmann's suspicion, I believe that my colleagues and I do know a few things.

We are aware, for instance, of Einstein's relation, E $=mc^2$. I did not write the question on the burning of gasoline in an automobile cylinder that Dr. Hoffmann has been working to make famous, and I do not know who did write it. Despite Dr. Hoffmann's comments. I believe that there is a reasonable context associated with the question and that this context is normally discerned by chemistry students who understand chemical change. After all, Professor J. R. Partington, the noted British chemist, wrote for the 1950 edition of Chambers' Encyclopaedia, Oxford University Press, as follows: "In the great majority of changes occurring in nature there is, to a high degree of accuracy, a separate conservation of quality [chemical elements present] and quantity in the case of matter and of quantity in the case of energy, so that two-or, if the conservation of the chemical elements is taken into account, threeseparate laws are recognized, the law of conservation of matter and the law of conservation of energy. In other words the total quantity of matter and the total quantity of energy remain constant in all normal physical and chemical changes. . . . For all normal chemical changes it may be safely assumed that the law of conservation of matter is true exactly." The understanding of chemical change expressed by Professor Partington underlies a number of important chemical calculations, and well-trained chemistry students are aware of these relations. I feel sure that the person who wrote this question for high-school chemistry students hoped to test for an understanding of

chemical change, and I feel sure that the teachers who reviewed the question read it in this context.

This question was never used in a test given for evaluating student performance. It has been tried out twice in what we call pretests, tests given to learn about the questions, not about the students. The second of these pretestings took place last spring when some 400 college-freshman chemistry students from 8 colleges took the pretest. A random sample of 300 of the answer sheets was studied in detail. Performances of the top quintile of the students are worth noting.²

Two of these top 60 students omitted the question. This is what Dr. Hoffmann seems to assume that superior students would do. Twenty-seven of them said that the burning of gasoline did not involve decomposition, and 11 of them said that reduction was not involved. Still, three times as many students from this group as from the bottom quintile chose the keyed response, conversion of matter to energy, as not being involved in this process.

This question was written for the booklet from which Dr. Hoffmann quotes. In a communication directly to ETS back in 1955 or 1956, Dr. Hoffmann pointed out what he considered to be the weakness of the question, and the ETS staff at that time recognized that some people might miss the context in which the question was written. The question for the booklet was therefore revised and since the 1957 edition has had for its fifth option, "conversion of energy to matter." The facts do not substantiate the assertion that "ETS" does not know about $E = mc^2$, and I believe that the question as originally worded tested an important understanding of chemical change.

The question on the potassium electron and the lithium electron was also written for the booklet about the tests rather than for a test. It, too, was written for

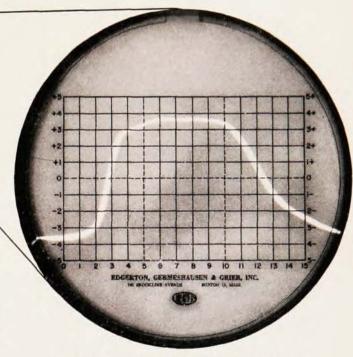
essor Partington underlies a number of important hemical calculations, and well-trained chemistry stuents are aware of these relations. I feel sure that the erson who wrote this question for high-school chemitry students hoped to test for an understanding of this particular pretest of 55 questions, getting only 37 questions are aware of these relations. I feel sure that the erson who wrote this question for high-school chemitry students hoped to test for an understanding of the selecting of the superior students. If the test as a whole is faulty, those who get high scores on it are not necessarily superior. In practice few tests of achievement ever miss the higher scores on it do not prove to be superior in achievement. On this particular pretest of 65 questions, getting only 37 questions right put a student in the top quintile. Even assuming that there were a number of "defective" questions in the pretest and that the superior students missed all of these "defective" questions, one must conclude that the overwhelming majority of the superior students by any criterion were in the top quintile on this test.

GFF milli-mike INSTRUMENTS FOR SUB-MILLIMICROSECOND MEASUREMENTS

MODEL 707

TW Oscilloscope

0.2 Musec RISE TIME DC TO 2000 MC BANDWIDTH


Single transient and repetitive signal capabilities. .002" spot size for maximum resolution. Illuminated reticle attachment permits use of any standard camera.

MODEL 751

Pulse Generator

All solid-state. Repetition Rate: 10 to 100,000 cycles. Pulse Width: 2 to 100 millimicroseconds, Rise Time: 1.0 millimicrosecond approx. Operable in any position. Low power requirement.

Actual size pulse on Model 707 screen. Display width: 6 millimicroseconds; Rise Time: 1 millimicrosecond; Pulse Amplitude: 20 volts.

ACCESSORY EQUIPMENT

MODEL 850 Integrated Camera System

Permits recording of fastest single transient at 1:1 ratio. F/0.7 fixed focus lens prevents operator error. Data card and film numbering system. Manual or remote shutter control, Removable 5X viewer permits direct observation of KRT. Takes cut film or Polaroid Land film.

MODEL 819 Pulse Inverter

Designed for use with Pulse Generator to reverse pulse polarity. Input: 50 ohms. Output: 50 ohms.

A coaxial-ferrite balun with excellent frequency response for converting 50-ohm, single-ended signals to push-pull 100-ohm signals.

MODEL TS-34 Diode Recovery System

Used with 707 Scope, measures diode recovery time in Musec. region, permits simultaneous display of timing marks for calibration.

STANDARD AND CUSTOM-BUILT PULSE TRANSFORMERS Detailed Information on request.

FOR FURTHER INFORMATION, CALL:

Alabama California

Colorado Canada Florida Illinois

Maryland Massachusetts Michigan

Denver Willowdale, Ont. Orlando Chicago Towson Wheaton Boston Livonia

Huntsville

San Gabriel San Carlos

San Diego

536-0631 ATlantic 7-9633 LYtell 3-7693 ACademy 3-7133 MAin 3-1458 MAIR 3-1458 BAldwin 5-7391 CHerry 1-4445 NAtional 2-8650 VAlley 3-3434 LOckwood 5-3066 COpley 7-9700

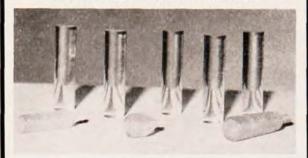
453-8414

Minnesota New Jersey New Mexico New York No. Carolina

Texas Utah Washington Wisconsin

St. Paul Ridgewood Albuquerque Syracuse Winston-Salem Dayton Cleveland Fort Worth Salt Lake City Seattle Milwaukee

MIdway 8-5531 Gilbert 4-1400 AMherst 8-2478 Glbson 6-1771 STate 8-0431 BAldwin 3-9621 JAckson 6-3990 PErshing 3-2394 EMpire 4-3057 PArkway 3-3320 FLagstone 2-2657


EDGERTON, GERMESHAUSEN & GRIER, INC.

181 BROOKLINE AVENUE, BOSTON 15 MASSACHUSETTS . TEL. COPLEY 7-9700 . CABLE: EGGINC, BOSTON; TWX: BS1099 WESTERN OPERATIONS: P. O. Box 1912, Las Vegas, Nevada — Santa Barbara Airport, P. O. Box 98, Goleta, Calif.

LASER

SINGLE CRYSTALS

Semi-Elements has the most complete line of higest quality LASER Single Crystals

 $\begin{array}{c} {\sf CaF}_{2'} \; {\sf BaF}_{2'} \; {\sf CdF}_{2'} \; {\sf SrF}_{2'} \; {\sf CaO}_{2'} \\ {\sf CaWO}_{4'} \; {\sf MgO}, \; {\sf MnF}_{2'} \; {\sf Al}_2{\sf O}_3, \\ {\sf SrWO}_{4'} \; {\sf SrMoO}_{4'} \; {\sf TiO}_{2'} \; {\sf KMnF}_{2'} \\ & {\sf RbMnF}_{2'} \; {\sf SrF}_2 \cdot {\sf CaF}_{2'} \\ {\sf SrF}_2 \cdot {\sf BaF}_{2'} \; {\sf SrF}_2 \cdot {\sf CaF}_2 \cdot {\sf BaF}_2 \end{array}$

We are now in full scale production of CaWO4

doped with rare earths and transition elements

Exploratory-

GLASS LASERS PLASTIC LASERS LIQUID LASERS

Now Available doped with rare earths and transition elements

Some new crystals now in development which show promise are:

Barium Molybdate—Cesium Molybdate Zinc Tungstate—Cesium Tungstate Lead Molybdate

Send for comprehensive literature

Semi • Elements, Inc

SAXONBURG BLVD. - SAXONBURG, PA. + U.S.A.

Dial 412-352-1548

high-school chemistry students. Again I know nothing of the writing of the question, but I believe that the wording was devised in the hope of asking something about ionization potential and energy levels of atoms in a context where students would not be able to respond from memory but would have to do a little thinking. The question was reviewed by a group of competent college and school chemistry teachers, and, in the context for which it was intended (high-school chemistry), they were satisfied that it had merit,

Dr. Hoffmann has expressed his opinion that four of the options listed for this question are satisfactory answers. In a communication 3 to the editor of *Physics Today*, Dr. Robert Hart has pointed out that the question, referring as it does to the photoelectric effect, must relate to the solid state but that the responses are applicable only to gaseous atoms. He concludes that none of the suggested responses are appropriate for the question that is asked.

The comments of Dr. Hoffmann and Dr. Hart can be used to illustrate the way in which the committee system for test review operates. Suppose that a committee member had written the question and that Dr. Hoffmann, but not Dr. Hart, had been on the committee. During the review session, Dr. Hoffmann would have commented as he did in his Harper's and Physics Today articles. After some discussion another committee member might have said, "As I see it, Dr. Hoffmann, if we agree with your viewpoint, we must be saying that we accept all of the following statements as true: The valence electron of potassium is farther from the nucleus than is the valence electron of lithium because the potassium atom contains more electrons than does that of lithium. The valence electron of potassium is farther from the nucleus than is the valence electron of lithium because the potassium atom contains more protons than does that of lithium. The valence electron of potassium is farther from the nucleus than is the valence electron of lithium because the potassium nucleus is larger than is that of lithium."

For myself, I do not consider these satisfactory statements of cause and effect, but suppose that the committee had decided to modify the question to meet Dr. Hoffmann's objections. Without Dr. Hart on the committee, his objections to the question would still not have been raised and he would not have been satisfied with it. If he had been on the committee, he no doubt would have asserted that the trouble with the question was not that there were four answers but that there was no answer. The committee might have decided that reference to the photoelectric effect would have to be removed from the question and the test because the effect was not understood by a large majority of present-day high-school chemistry students since they had not been taught about it and did not have adequate background to understand it.

This situation is not unusual in fields of dynamic change like the sciences. A test committee, after

² Physics Today, February 1962, p. 62.

Plasma Physicists

Recent accomplishments at the Hughes Research Laboratories in diversified areas of plasma and gas discharge physics are providing openings at both senior and junior levels for qualified Scientists and Engineers with an interest in basic or applied research. Unusual opportunities for professional growth in an outstanding professional environment, with the availability of exceptional facilities that exist in programs including:

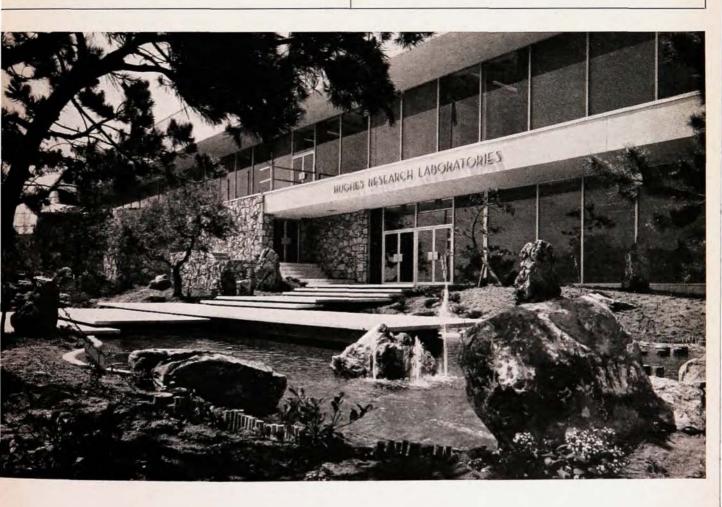
THERMIONIC ENERGY CONVERSION

Original research has opened at the Hughes Research Laboratories a vigorous program of thermionic conversion of heat into electricity. A position of important responsibility and rapid growth potential exists in this area for a scientist capable of taking over the leadership of this program. Positions at junior levels are also opened in this area.

BASIC PLASMA RESEARCH

Positions are opened for Scientists interested in contributing to existing investigations of fundamental plasma properties (Multistream type interactions, diffusion, instabilities, properties of high energy plasma beams), or for Scientists capable of initiating new and scientific programs of their own.

The facilities of the Hughes Research Laboratories are located in Malibu, California, overlooking the Pacific Ocean—immediately adjacent to major academic institutions—with programs of academic support and participation. These facilities were specifically designed for effective research efforts with private offices and complete research laboratories. In this uniquely creative atmosphere, Hughes scientists are continually adding to their record of accomplishments in electronics and physics research.


Your inquiry may be directed in strict confidence to: Dr. G. R. Brewer, Hughes Research Laboratories, Malibu, California.

An equal opportunity employer.

creating a new world with electronics

HUGHES

RESEARCH LABORATORIES

RESEARCH OPPORTUNITIES FOR PHYSICISTS

- · Physical Optics
- · Radiation and Hydrodynamics in Plasmas
- Optical Maser Technology
- Upper-atmosphere Optical Phenomena
- · Effects of Nuclear Detonations
- Gamma-ray Transport

We are addressing this to physicists who are interested in becoming associated with a small, informal research organization that has a working environment more nearly academic than is generally found in industrial corporations. Tech/Ops is a private research and development company doing work in the physical sciences, with a staff of 150 scientists. Because the Company is managed by three physicists, Dr. F. C. Henriques, Dr. E. T. Clarke, and Dr. M. G. Schorr, the atmosphere of the Company tends to be oriented toward the needs and requirements of the scientific staff. We like to think we operate with a minimum amount of red tape and a maximum amount of individual recognition for scientific achievement. The Tech/Ops Physics Group numbers about 25, including 10 Ph.D's. The following is representative of the work of the group.

Optical maser research from the standpoint of optical antenna design and the physics of the laser process.

Experimental and theoretical studies of atmospheric transmission of coherent optical radiation, using laser and interferometer techniques.

Two-dimensional hydrodynamics of hot expanding gases in a layered atmosphere, including transport of the concomitant radiation.

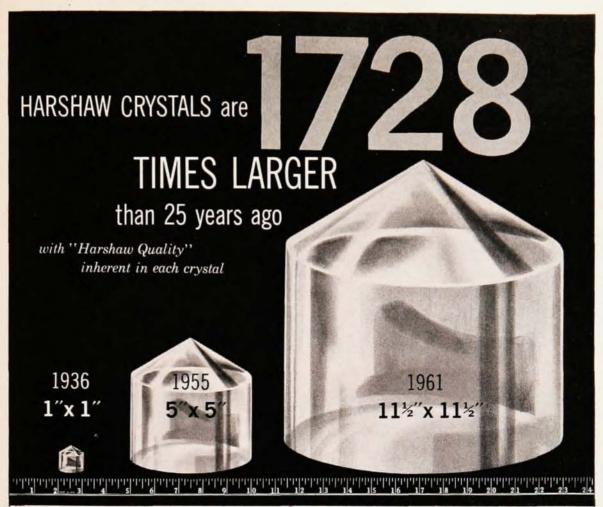
Studies of visible and infrared airglows and auroras, and the effects of chemical releases and nuclear explosions on these upper atmosphere phenomena.

Experiments on transport of gamma-ray in full-size and model structures.

Tech/Ops laboratories are located on Route 128 in Burlington, Mass., 12 miles from downtown Boston.

For further information write: Robert L. Koller

Technical Operations, Inc. Burlington, Mass.



debating the implications of a question, may decide that the value of the question is great enough to merit its use in a test for high-school students even though the committee knows very well that a research scientist in the field covered by the question would consider the question incomplete or unsatisfactory. In such cases, the committee is acting on the belief that the rare high-school student who has pushed his knowledge of the field involved far beyond his textbook will be sophisticated enough to recognize the context associated with the question and will answer it correctly. Such a decision does not reveal professional incompetence on the part of the committee but rather shows that they recognize that education proceeds by steps and that, at the moment, questions are being prepared for beginners.

The question about the potassium and the lithium electrons was included in the recent pretest referred to previously. Only five of 60 students from the top quintile missed the question, and about three times as many students from the top quintile as from the bottom quintile chose the expected answer.

The instructions to students who take the ETS multiple choice tests direct that the "best" answer of those offered be selected. Question writers occasionally try to require students to make decisions among choices none of which contains an error of fact but only one of which is a best response when the situation described in the question is evaluated. The question on the prism forming a spectrum from white light is such a question. Dr. Hoffmann is, of course, clearly right in asserting that a prism could not form a complete spectrum from white light if this light did not contain light of all the colors of the spectrum. This is surely a necessary condition for the prism to work but not a sufficient one. A plane mirror may receive the same white light and yet produce no spectrum. The desired response—the amount of refraction differs for light of different wave lengths-is more nearly, though not perfectly, both a necessary and a sufficient condition. To eliminate judgments such as that required in this question and that asked for in the potassiumelectron question, tends to reduce a test to questions which can be answered by rote memory and so to lead to a test favoring students with photographic memories. Is this desirable? I join with most teachers in thinking not.

In addition to the knowledge which I have in common with Dr. Hoffmann, I believe that I know some things of which Dr. Hoffmann seems not to be aware or which he ignores. Questions for the physics tests prepared by ETS are written, almost without exception, by physics teachers in colleges and secondary schools and without exception are reviewed several times by these teachers before the questions are used to evaluate the knowledge of students. In recent years committees of examiners for our physics tests for high-school students have included professors in the following institutions: Bryn Mawr College, California Institute of Technology, Colgate University, DePauw University,

This year Harshaw's Crystal Division celebrates its Silver Anniversary. In these 25

years the "art" of growing crystals has given way to scientific procedures. With expanded crystal research and development laboratories, and recently doubled production facilities, Harshaw stands ready to produce your crystals—regardless of technical nature or production magnitude. Our physics, chemistry, and engineering departments enjoy the challenge of increasingly stringent demands from scientists and instrument manufacturers for infrared and ultraviolet optical crystals, and scintillation phosphors.

OPTICAL CRYSTALS

For Infrared and Ultra Violet Transmitting Optics

- . Sodium Chloride
- Sodium Chloride Monochromator Plates
- Potassium Bromide
 Potassium Bromide Pelle
- Potassium Bromide Pellet Powder (through 200 on 325 mesh).
- Potassium Chloride
- Optical Silver Chloride
- Thallium Bromide lodide
- Lithium Fluoride
- Lithium Fluoride Monochromator Plates
- Calcium Fluoride • Barium Fluoride
- Cesium Bromide
- Cesium Iodide

SCINTILLATION

Mounted NaI (TI) Crystals

Crystal detectors designed for your most sophisticated counting problems. Our physics and engineering groups are available to assist you.

- Other Phosphors—Rough Cut Thallium Activated Sodium Iodide Crystal Blanks
- Europium Activated Lithium lodide (Normal)
- Europium Activated Lithium lodide (96% Li* Enriched)
- Thallium Activated Cesium lodide
- Thallium Activated Potassium lodide
- Anthracene
- Plastic Phosphors

Write for our 36-page booklet "Synthetic Optical Crystals" or our 44-page booklet "Scintillation Phosphors"

The Harshaw Chemical Company

1945 East 97th Street • Cleveland 6, Ohio Utrecht, Netherlands — Contact Harshaw-Van Der Hoorn N. V., Juffaseweg 186

Crystal Division

GHVA, a dynamic leader in unique areas of space technology is offering professional opportunities through its continued growth. We are at the stage where a selected few individuals of the above average ability, from the senior managerial level to recent graduates, may make their contributions felt. To such men, GHVA confidently offers:

- · A Dominant Technological Position
- · A Vigorous Scientific Climate
- Outstanding Opportunities of Personal Leadership
- · Small Company Atmosphere with Strong Backing

PHYSICISTS AND ENGINEERS

are needed at the BS, MS, and PhD level with analytical or experimental training or experience in the following areas:

ELECTROSTATICS and POWER CONVERSION

Power supplies for space, Electrostatic Generation, Electric Field Problems, High Voltage Insulation, Electric and Magnetic Energy Storage Techniques, Spinning Cathode Development, Thermionic Power Generation, High Speed Rotation in Vacuum.

ION DEVICES, PLASMA PHYSICS

Ion sources and engines for critical applications in space, power supply requirements for these devices including design and execution of experiments leading to practicable systems, experimental studies of plasma phenomena in arc type ion generators and neutralized beam dynamics.

SOLID STATE DEVICES

Electron and/or ion beam techniques for radical new approaches to information storage and microcircuitry. Solid state measurements to initiate programs for energy storage in insulators.

For a confidential discussion of these positions, please write:

Mr. Louis J. Ennis, P. O. Box 98, Burlington, Massachusetts.

Goodrich - High Voltage Astronautics, Inc.

12 Miles North of Boston

BURLINGTON, MASS.

As Equal Opportunity Employer

Florida State University, Lake Forest College, Massachusetts Institute of Technology, Princeton University, Rensselaer Polytechnic Institute, Rutgers—The State University, the University of Colorado, and Wellesley College. Secondary-school physics teachers from the following schools have served with the college professors: Bronx High School of Science, Choate School, Hotchkiss School, Phillips Exeter Academy, Plainfield (N. J.) High School, St. Mark's School of Texas, and Upper Darby (Pa.) High School.

Members of the committees for the comparable chemistry tests have come from Amherst College, Hamline College, Kenyon College, Michigan State University, Pennsylvania State University, Tufts University, the University of Kansas, Wabash College, Lawrenceville School, Lewis and Clark High School of Spokane, Lincoln School, New Trier (Ill.) Township High School, and South High School of Denver.

In the second place, I know that in the times in which we live some method of selecting students to be admitted to a certain college must be used. Everybody cannot go to Harvard—or to Queens. Surely methods better than drawing names from a hat should be employed to decide which students shall be admitted, I agree that secondary-school grades, letters of recommendation, interviews, and lists of interests and activities should be used, and all these factors are being used. Beyond these, however, I believe that the selection is improved by including performances on a set of tasks which all candidates have undertaken under approximately the same conditions. College Board tests, prepared by committees with ETS technical assistance, are such a set of tasks.

Perhaps Dr. Hoffmann thinks that essay examinations should be used to avoid the "tyranny of the multiple choice question". Though essay tests have important values, they do have some faults. Essay questions, too, must be written and they can be as misleading as objective questions. Furthermore, many fewer essay questions than objective questions can be asked in the same testing time, and the chance is much greater that a superior student will not even be asked the questions for which he is particularly prepared when he takes an essay test than when he takes an objective test. Even more important, essay tests must be read when they are graded. This grading is subject to large uncertainties due to differences among the readers. The grading is very expensive, and it takes many man-hours. There is still one further problem. Dr. Hoffmann believes that our committees of examiners miss some of the meanings of the questions they review; yet this review is performed by at least five teachers and is done a number of times. Reading each essay answer and scoring it accurately requires the same looking for meanings, and each essay answer could not possibly receive the attention that each question in one of the multiple choice tests does receive. Yet the future of a student would rest on the scoring of the essay papers just as much as it rests on his score on a multiple choice test.

J,UUU,UUU AMI 7,000.000 AMP 3.000.000 AMP 7 MAN MANARI

just a microsec, mister...

and you can have 2 million, 7 million...25 million peres. In about one millionth of a second. Name your ure, and it's yours, with multiple banks of Cornell-Dubar N-R-G® low-inductance energy storage capacitors.

ilt by the industry's most experienced manufacturer energy storage capacitors, Cornell-Dubilier N-R-G's used wherever extremely high instantaneous power required. Here are some typical applications:

nuclear research and related experiments. Cornellbilier N-R-G capacitors supply power for thermonuar fusion experiments such as those now being concted at the Naval Research Laboratories. They are o used in ballistic accelerators and in high-speed arx generators.

studying missile and satellite reentry problems. N-R-G pacitors power arc-heated hypersonic wind tunnels, nerating velocities up to 20,000 fps and stagnation nperatures up to 10,000° K.

the most advanced metalworking processes. Cornellbilier has developed N-R-G capacitors for precision ning and shaping of difficult metals. I rough electrical discharge machining, magnetic field forming and high-energy forming by capacitor discharge under water.

In the exciting new field of magnetohydrodynamics (MHD). Cornell-Dubilier is sole source of the compact, lightweight, fast-discharge capacitors specified by a major west coast corporation for a prototype plasma engine to propel interstellar space ships.

In exploding wires, submicrosecond light sources and arc discharges, and numerous other applications.

In addition to their tremendous versatility and reliability, Cornell-Dubilier N-R-G capacitors also have astonishing staying power. Now in final stages of development and soon to be available are energy storage capacitors with 500,000-discharge and higher life spans, affording the lowest cost per joule per discharge ever achieved!

Now is the time to ask your CDE representative how N-R-G capacitors can benefit you. Prove to yourself that in energy storage capacitors, as in hundreds of

other electronic component and system categories, Cornell-Dubilier Can Do!

ADVANCED SOLID STATE RESEARCH & DEVELOPMENT

Scientists and engineers of above average ability are needed to contribute to the rapidly expanding research and development efforts at Fairchild. The right balance of intellectual challenge, freedom of technical action, yet moderate guidance, causes capable individuals to grow professionally while they are producing results for us.

Right now we have more planned R and D programs than we have top flight people to work on them. These areas of need may start you thinking:

- . SOLID STATE PHYSICS & CHEMISTRY
- SEMICONDUCTOR DEVICE DEVELOPMENT
- . MAGNETIC FILMS
- MICROWAVE PHYSICS
- MICROCIRCUITRY

All openings are with our Laboratories located on the beautiful San Francisco Peninsula. Advanced degree or commensurate experience is especially desirable.

Interested applicants are invited to submit detailed resumes, including salary requirements, to Mr. Donald Palmer. Palo Alto interviews for qualified applicants will be arranged from anywhere in the United States. All inquiries strictly confidential and acknowledged.

FAIRCHILD

SEMICONDUCTOR

AN EQUAL OPPORTUNITY EMPLOYER

844 Charleston Road

Palo Alto, California

Another factor that Dr. Hoffmann prefers to ignore. it seems to me, is that the value of the entire test is not determined by one or even several of its questions, An objective test score is the summation of the performances on an appreciable number of tasks even as a scientific law, on a different level of generalization, emerges as the summation of many laboratory experiences. I happen to have run some low-temperature heat-capacity determinations. The fact that a few points do not quite lie on the smoothed curve of heat capacities plotted against temperature is not an adequate reason for throwing out all the data nor for convening a committee to look at the method. One may hope that all the points will lie on the curve when the next determination is run, and one may work very hard to this end, but he is really not surprised if this goal is not reached.

If I am not willing that multiple choice tests be condemned on the basis of judgments on a few questions, what criterion would I use for judging them? I would ask, "Do the test scores correlate well with teacher-given grades in the appropriate courses? And if used in admission procedures, do the scores have value in predicting college performance?" Studies have shown that scores on a carefully prepared test, even though planned for a national sample of students, correlate 0.60 and more with the course grades assigned by the science teacher to his students in a single school. In a number of colleges and universities, though not in all, College Board test scores correlate as well with grades obtained during the college freshman year as do the grades from the entire high-school course of study. These results do not suggest that objective tests are perfect predictors, but neither do they indicate that the scores on the tests are valueless or dangerous.

These comments are not to be taken as evidence that I as an individual—or ETS as an organization—condones the use of defective questions or that I am not concerned about the superior student. Far too much of my day-to-day effort goes into the arduous process of trying to prepare good and fair questions to make such a charge justifiable.

I shall continue to be concerned that the committees charged with the preparation of ETS science tests be composed of the best people who will accept the appointments and will spend the necessary time at their tasks. I shall regrettably expect that a few of the questions included in the tests will be subject to interpretations which the committees will miss. But I shall continue to believe that, despite the limitations imposed by these "defective" questions, superior students will get superior scores on multiple-choice tests, that the complicated admission practices will guarantee college admission to the superior students who apply for admission, and that both the colleges who do the selection and the students who are considered by these colleges benefit from careful selection based, in part, on multiple-choice tests.