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CHARGED PARTICLES

By F. Rohrlich

known or assumed to exist today about half are

charged, The rest are electrically neutral, though
some of these undoubtedly consist of positive and nega-
tive charge distributions, as does for example the neu-
tron. A complete understanding of these particles will
involve quantum mechanics, quantum field theory, or
perhaps a not-yet-dreamed-of theory. But under cer-
tain conditions a classical description is adequate.

In fact, charged elementary particles are studied by
means of particle accelerators, i.e., by means of elec-
tric and magnetic fields; their motion is almost en-
tirely described by means of classical particle electro-
dynamics. No physicist bats an eyelash about that. But
I know a number of them who would not readily agree
that quantum electrodynamics has a classical limit.

Is there a consistent classical description of a charged
particle? To be sure, it would have a limited domain of
validity, viz., outside the domain of quantum mechan-
ics. It would be related to a quantum description, just
as classical mechanics is related to quantum mechanics.
Classical mechanics, although having only a limited
domain of validity, is a consistent theory which stands
on its own. Is there an equally consistent classical par-
ticle electrodynamics?

OF the approximately thirty elementary particles

Background

AT first, we should be quite content with a descrip-
tion of spinless particles such as » mesons, All
the essential difficulties are already contained in such
a theory.

A spinless elementary particle is spherically sym-
metric. Its size is given in order of magnitude by
its Compton wavelength; the largest such particle is
therefore the electron (X = 4 X 10-* cm). It follows
that the size of elementary charged particles is too
small to be seen by classical observations. They are
point particles. This is the more reasonable, because
any structure that these particles might have is cer-
tainly of a quantum-mechanical nature and not mean-
ingfully described in a classical theory. And as far as
electrons are concerned, even quantum electrodynamics
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pictures them as point particles in the sense that they
have no structure. All experiments so far have con-
firmed this,

But here is also the first and most important diffi-
culty: while a sphere of radius r and charge ¢ has an
electrostatic energy (self-energy) Ae®/r, where A is a
number which depends on the charge distribution in-
side the sphere, a point charge (r — 0) has infinite self-
energy.

This difficulty was already encountered by Lorentz
and Abraham who, after the discovery of the electron
at the turn of the century, constructed the first impor-
tant classical theory of a charged particle. Another diffi-
culty which is closely connected with this one is the
instability of a classical charge: a (nonelectromagnetic)
attractive force is apparently necessary to hold together
the individual parts of a charged particle. This force is
often referred to as the “Poincaré stress”.

Going from statics to kinematics we find more diffi-
culties: the Coulomb field surrounding the electron has
energy and, correspondingly, a mass, according to spe-
cial relativity, Since an electron always carries its Cou-
lomb field with itself, this field must satisfy the kine-
matics of classical mechanics. If m, is the mass of that
field and v its velocity, then its momentum must be
given by p =m,v. Lorentz showed that this is not the
case. A factor 4 on the right-hand side of this equation
spoils the theory. The momentum and the velocity do
not keep in step with each other even for a free par-
ticle. The descriptions of the particle and of the sur-
rounding Coulomb field cannot be combined into a
unified whole, contrary to our observational evidence.

Finally, when we inquire about the dynamics of a
moving charge, we are given the well-known Lorentz
force equation

ma=e(E+v x B) (1)

discussed in every text, but we are warned not to take
this equation too seriously: the radiation reaction is
neglected. The radiation emitted by an accelerated
charge causes a recoil effect and an energy loss, quanti-
ties which are not properly included in the Lorentz
force equation.

For a point particle, it was shown by Lorentz that
the radiation reaction can be included by adding a term
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proportional to the time derivative of acceleration,
Abraham generalized this Lo a relativistically valid
term, Dirac, in a famous paper ! published in 1938, re-
derived the equation of motion, including the Abraham
term, from first principles by a very different method
than was used by Lorentz and Abraham. This Lorentz-
Dirac equation thus seems to be the answer: It is a
relativistically correct equation and it includes properly
the radiation-reaction effecls.

There is, however, one trouble with this equation,
It yields, in addition to the physical solution of a given
problem, unphysical solutions in which the charged par-
ticle characteristically accelerates indefinitely as time
goes on, even if the force ceases to act, and, in fact,
even when there is no force at all. These “runaway"”
solutions prevented the Lorentz-Dirac equation from
being generally accepted as a fundamental equation,
But our theory must consist of Maxwell's equations for
the fields associated with moving charges and field
equations for the motion of charges caused by fields,
the latter being established only in the form of Eq. (1),
viz., when radiation reaction is neglected. Thus, we do
not have a completely consistent classical particle elec-
trodynamics,

The above difficulties of self-energy and self-stress,
of kinematics and of dynamics for a classical charged
particle, are in striking contrast to relativistic quantum
electrodynamics. Though this theory is by no means in
perfect shape or in its final form, it has been developed
sufficiently far to cope with seli-energy problems by
renormalization, to make the self-stress vanish, and to
treat the dynamics of electrons, including radiation re-
action in agreement with the most accurate experiments
in physics today, involving confirmation to nine figures
and more. Yet we still consider classical electrody-
namics, which is in much worse shape, to be a special
case of quantum electrodynamics,

This paradoxical situation can be explained to a
large extent by the fact that relatively very few theo-
retical physicists are nowadays working on the funda-
mentals of classical electrodynamics, many of them be-
ing carried away by the wealth of new discoveries in
experimental physics, especially in high-energy and ele-
mentary-particle physics. It is deplorable that the logi-
cal consistency of various branches of physics, and the
beauty and harmony resulting from an understanding
of their relationship with each other, is taking a back
seat in favor of the necessarily speculative approach
demanded from the latest “theory” about the most re-
cent results from the biggest accelerator,

Recent Progress—Dated 1922

HE infinite self-energy of a point charge is often

blamed for all the difficulties of the classical the-
ory. In particular, it has been stated repeatedly that
the unsatisfactory relation p =4 m,v arises because
both p and m, are infinite. At the same time, this re-
lation is not consistent with relativity, because the en-
ergy and momentum of a particle constitute a four-

[

Fig. 1

vector, so that the relation m,c® = E for the rest en-
ergy is inconsistent with the factor 4. Thus, one arrives
at the conclusion that the transformation properties of
p are incorrect (i.e., it does not arise from the non-
relativistic limit of a four-vector) because the theory
diverges.

But this conclusion is wrong. We know the example
of quantum electrodynamics. Here is a relativistic the-
ory which diverges. The self-energy is infinite, but all
quantities transform correctly. Why. then, should this
not also be the case in its classical counterpart?

The solution of this dilemma is very simple. It was
first pointed out in 1922 (!) by Fermi.* but was then
completely forgotten. It never found its way into the
textbooks. It was rediscovered by Kwal 2 in 1049, but
again without receiving any attention. Ten years later
I also rediscovered the solution to this problem and
published it * before learning of the work of these two
authors.

Lorentz knew how to compute the energy and the
momentum of radiation from the energy density and
the Poynting vector. He then assumed that the same
formulas can be used to compute the energy and the
momentum of the Coulomb field surrounding a free
charged particle. He did this nonrelativistically as well
as relativistically, and he took great pains to account
for the relativistic deformation of a moving sphere
But he did not use covariant notation and consequently
he did not notice that he made a mistake. He did not
take into account that the three-dimensional volume
element in his integrals is one component of a four-
vector and must be transformed accordingly. He di_d
not realize that it is absolutely essential in a relativistic
theory that the observer in the rest system of the
moving particle should always see the same thing, no
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matter what the velocity of the uniformly moving
charge might be. This is not a trivial matter, because
a Coulomb field extends over all space; it is a non-
local object. And the point particle, being the limit of
an extended particle, must be “rigid”. This means ex-
actly that the comoving observer sees the particle and
its field in its usual state of rest. In a Minkowski space-
time diagram this implies that the plane which de-
scribes three-dimensional space must be tilted when one
integrates over a moving charge. The tilt must be such
that the velocity and the normal to the plane are paral-
lel at every instant. (Fig. 1.)

When this is taken into account, the nonrelativistic
limit shows that Lorentz' formula for £ was correct,
but that the one for p lacked a term. Thal missing
term involves the Maxwell stress tensor (to no one's
surprise after the above remarks about rigidity). It
yields —1m_v, so that one finally obtains the ex-
pected result p = m,v without the factor §

One concludes that in the classical theory also the
divergent nature of certain quantities cannot be held
responsible for incorrect transformation properties. We
have a relativistically correct theory, though it is still
divergent.

In classical electrodynamics we can now do just as
well as in quantum electrodynamics. There the method
of renormalization removed all divergences and made
the self-stress vanish. Renormalization can also be ap-
plied to classical charges. In fact, it was used in the
classical case by Kramers * and Dirac® long before its
use in quantum electrodynamics. Today, with the ex-
perience of quantum field theory, this can be done
more generally and more elegantly,

You Pay For What You Get

THE classical and the quantum description of
charges are now at par. The only remaining stum-
bling block is the equation of motion. The Lorentz-
Dirac equation would be quite satisfactory if it were
not for the runaway solutions.

There is, however, another feature of the Lorentz-
Dirac equation. As mentioned previously, it contains a
radiation-reaction term which is the time derivative
of acceleration, ie., the third derivative of position.
The differential equation is therefore of third order.
Such an equation requires three initial conditions. The
Newtonian equation of motion of classical mechanics is
of second order, requiring initial position and velocity.
Here, we need also the initial acceleration. This is very
bad, because we don't know how to choose this initial
acceleration. Only for a very special choice of it does
one obtain the physical solution. The smallest error in
this choice is sufficient to assure a runaway solution.

This situation shows clearly that, in agreement with
one’s physical intuition, the equation should not be of
third order. What should be specified is not the nitial
acceleration (which we don’t know how to choose) but
the final acceleration. We do know something about the
acceleration in the distant future: it should not be infi-

March 1962

-

2]

nite, ie., it should not be a runaway solution. Thus,
what we have here is an asymptotic condition on the
acceleration, a condition which must be an integral
part of the equation of motion, so that only physical
solutions will arise.

This asymptotic condition can indeed be combined
with the Lorentz-Dirac differential equation. The result
is an integro-differential equation.® This equation must
now be regarded as the equation of motion and as one
of the fundamental equations of classical particle elec-
trodynamics. It is not equivalent to the Lorentz-Dirac
equation, but contains, in addition, the restriction to
physical solutions only,

This new equation of motion is of second order, so
that it poses an initial value problem of the Newtonian
type, requiring only initial position and velocity. Thus,
both difficulties of the Lorentz-Dirac equation (run-
away solutions and third-order character) are elimi-
nated simultaneously, as was in fact to be expected.

Do we have to pay for this gain? Yes, indeed, The
new equation of motion exhibits a new feature not
known in classical mechanics. From the latter we be-
came accustomed to an instantaneous relationship be-
tween the onset of a force and the onset of accelera-
tion. And, similarly, when the force ceases, the ac-
celeration ceases too, at once. This instantaneity now
no longer holds for a charged particle subject to a
force, The onset of acceleration can in fact occur prior
to the onset of the force. An example of this is shown
in Fig. 2.

Thus, according to the new equation of motion, it is
meaningless to talk about a causal relationship be-
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tween force and acceleration. But this does mot mean
that a specific force does not give rise to a precise,
unique orbit of the particle. The particle's position at
any time s completely and exactly predictable from
the given force and the initial conditions.

This, then, is the price we must pay for having a
consistent, complete particle electrodynamics. But isn't
this price too high? Haven't we bartered the non-
physical runaway solutions for equally nonphysical
acausality? 1 do not think so, and the reason is as
follows:

The term which involves the third time derivative of
position in the Lorentz-Dirac equation, and which no
longer occurs in the new equation of motion, contains
a factor 7y = § ¢*/(m ¢"). This is a constant for a given
particle of mass m and charge e; it is the time it takes
a light ray in vacuum to traverse a distance 5 e*/(m ¢*).
Of all charged particles known the electron has the
largest 7. It is 0.62 x 10-** sec, a very short time in-
deed. But it is just this time r, which determines the
order of magnitude of the noninstant, “acausal” rela-
tion between force and acceleration. It can easily be
seen that there is no classical measurement by which
such a small acausality can ever be observed. And if a
quantum mechanical measurement is made, the present
theory is not valid, The unphysical nature exhibited by
the new equations of motion is therefore not observ-
able. It should disturb us no more than the computa-
tions in nonrelativistic mechanics which predict that
with sufficient power a space ship can go to the nearest
fixed star, o Centauri, and back again in only 90 days,
while a light ray takes nine years for the same round
trip. The validity limits of the classical theory with re-
spect to small time intervals is here an essential con-
sideration, Taking these limits into account, the price
we pay is small indeed.

Galileo and Maxwell vs. Energy Conservation

IS the classical theory now put in order? Not so
quickly. We have not yet looked into its consistency
with the theory of gravitation. The central question
here is whether the principle of equivalence also holds
for electromagnetic processes. We would certainly like
a positive answer on this. Is the new equation of mo-
tion consistent with it?

Consider the following thought experiment. Galileo
climbs up the tower and drops one neutron and one
proton side by side onto the ground below in a suitably
evacuated Pisa (Fig. 3). Will they fall equally fast?

If the principle of equivalence is to be valid, then
an observer falling with the particles should see a neu-
tron and a proton at rest side by side throughout the
trip from the top of the tower to the ground. They
must consequently fall equally fast and reach the
ground simultaneously.

If Maxwell's equations are valid (and we certainly
believe that they are), the proton, being accelerated
gravitationally, will emit radiation. Conservation of en-
ergy then implies that it must slow down and reach the
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ground later than the neutron. Thus, Maxwell's equa-
tions and the principle of equivalence are apparently
not consistent with each other,

This is an incorrect conclusion. Does the emission
of radiation necessarily imply a slowing down of the
charge? Energy conservation seems to require it, but
the correct answer must be found from the equation of
motion of the charge for the case of acceleration in a
constant force field,

We see now that the integro-differential equation of
motion is put to a test here, Is the particle electrody.
namics based on this equation together with Maxwell's
equations consistent with the principle of equivalence?

The motion we are concerned with here is known as
hyperbolic or uniformly accelerated motion. A charged
particle undergoing such motion emits radiation at a
constant rate.” The equation of motion can be solved
exactly. It yields a trajectory which is identical with
that of a neutral particle and is therefore consistent
with the principle of equivalence.

This leaves the question of energy conservation, We
are now in agreement with Galileo and Maxwell, but
we seem to be running head-on into a violation of en-
ergy conservation.

Let us again consult the equation of motion. Being
an equation for the acceleration four-vector, one com-
ponent of it 1s the energy conservation law per unit
time,. It becomes, for this case,

'—’%fi = F(t+ ro)olt + 7o) — R(t +70) (@)
The left hand side is the rate of change of kinetic en-
ergy at time 7. The right hand side is the work done
by the gravitational force per unit time less the rate
of radiation energy emission, all taken at time t+ 7,
This is exactly the conservation law which we expected
and on the basis of which the proton should go slower
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than the neutron; but the two sides of the equation
refer to different times! If this were not so, a compari-
son with the corresponding equation for the neutron,

dE(1)
dt

= F(hu(t), (3)

would indeed result in the predicted lag of the proton.
As it stands, equation (3) is also valid for the proton
and so is equation (2). They do not contradict each
other.

Furthermore, in a classical experiment no difference
between the conservation laws (2) and (3) can ever be
seen, because both r, and ® in (2) are much, much
too small to be observed, even if we had the strongest
gravitational fields available.

This fact, and the validity of both equations (2) and
(3), indicates the subtleties involved in energy con-
servation on the basis of the integro-differential equa-
tion of motion. The concepts are new and therefore
appear strange. But it would be difficult to contest the
mathematical consistency of this theory or its agree-
ment with experiment,

At some future time we shall (hopefully) have suc-
ceeded in unifying the theories of gravitational and
electromagnetic forces. Given this very general clas-
sical theory, it will then be interesting to consider the
limit in which gravitational forces vanish. One will thus
obtain a particle electrodynamics containing Maxwell's
equations and an equation of motion. Again hopefully,
this equation of motion will be the Lorentz-Dirac
equation. In our present, nonunified theory this is in-
deed the case.®

The internal consistency of fundamental physical
theory will then be tested in this indirect fashion: both
quantum electrodynamics and general relativity (in-
cluding electromagnetic phenomena) must have suit-
able limits in which the same classical description of
charged particles emerges.

Some Semiphilosophical Remarks

ANY questions remain to be answered: the rela-
tivistic two-body and many-body problem; the
associated initial-value problem; the problem of a for-
mulation free from the need for renormalization, and
others, But the basic equations and the characteristic
features of this classical theory are now pretty well
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understood. And, in any case, classical electrodynamics
is no longer in worse shape than quantum electrody-
namics.

One important problem which remains to be solved
concerns the gap that still exists between the classical
and the quantum description of charged particles. A
suitable limiting procedure, explicitly carried through,
must yield the classical theory from quantum electro-
dynamics. The logical structure of physical theory re-
quires that such a limit exist and that it yield exactly
the classical equations. The situation is completely
analogous to the small velocity limit of relativistic
mechanics: The equations of Newtonian mechanics are
obtained in the limit. A crucial test of the new equation
of motion will therefore be to prove whether it indeed
results from quantum electrodynamics in the classical
limit.

Pending the execution of such a program, one might
question whether there are not alternative equations of
motion, yielding an equally consistent theory mathe-
matically, and showing strange features which are too
small to be seen classically. Many papers have, in fact,
been written suggesting cut-off functions, shape factors,
etc., in order to cope with the difficulties. Here a basic
philosophical principle comes into play: the demand
for simplicity. The introduction of form factors consti-
tutes a considerable complication and involves great
arbitrariness. It should also be noted that quantum
electrodynamics predicts no structure for the electron
and, consequently, its classical limit must also describe
a point particle. On the other hand, if a particle with
structure is to be described, like, for example, the pro-
ton, it would remain to be shown that its charge and
magnetic moment distribution will survive on taking
the classical limit.

In conclusion, it might be worthwhile to point out
that the classical theory discussed here has several fea-
tures of interest to field theory, including quantum field
theory in general. There is the nonlocal behavior in
time; there is the characteristic time (“fundamental
length”) governing this behavior; there is the asymp-
totic condition which has become an essential part of
the fundamental equations of the theory; and there are
many interesting consequences if one assumes that =,
is so large that it can actually be measured. It might
well serve as an interesting model of a nonlocal non-
microcausal field theory,
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