New Openings in

reactor physics and mathematics

AT THE KNOLLS ATOMIC POWER LABORATORY

Physics work at KAPL divides about equally between theoretical and experimental investigations. Extensive computational and laboratory facilities are readily accessible to physicists and mathematicians whose broad mission is to generate concepts, data and methods for reactor design. The following openings are immediately available:

THEORETICAL REACTOR PHYSICISTS

A strong theoretical reactor physics program complements our experimental work and provides sound methodology and understanding in core and reactor systems design. The program includes—studies of neutron transport effects in static systems . . . statistical fluctuations studies of flux and power levels . . . evaluation of pulsed-neutron work for criticality and reactor parameter determination . . . investigation of nuclear-thermal interactions and non-linear effects in general . . . reactor kinetics studies. Qualifications include a PhD in Theoretical or Nuclear Physics, Nuclear Engineering.

EXPERIMENTAL REACTOR PHYSICISTS

The experimental reactor physics program is aimed at investigating the nuclear physics characteristics of new reactor designs currently under development. Activities include performance and analysis of critical experiments, utilizing several types of zero power reactors designed and built at KAPL . . nuclear-thermal-hydraulic interaction studies . . reactor kinetics studies . . . pulsed-neutron experiments with sub-critical lattices. Qualifications include a PhD in Nuclear Physics, Nuclear Engineering or other appropriate discipline. Significant experience in lieu of PhD is acceptable.

APPLIED MATHEMATICIANS

The major effort involves research in numerical analysis related to the solution of problems arising in the design of nuclear power plants, and development of improved techniques for solving reactor problems. Our Mathematicians also provide consultation on the formulation of programs involving application of large digital computers to this work. PhD in Mathematics, plus pertinent experience.

To apply, or gain additional information, write fully in strict confidence to Mr. G. L. Smallwood, Div. 51-K.

Knolls Atomic Power Laboratory

GENERAL (ELECTRIC

SCHENECTADY, NEW YORK

U.S. Citizenship Required

An Equal Opportunity Employer

PUBLISHING NEWS

Proceedings

The proceedings of the International School of Physics "Enrico Fermi", previously published as supplements to Nuovo Cimento, are now being published by Academic Press of New York under an agreement with the Italian Physical Society, sponsor of the School. The general editor for the series is G. Polvani, president of the Italian Physical Society. Publication by Academic Press commenced with Ergodic Theories, course 14 of the 1960 series. Other titles from the 1960 series are Nuclear Spectroscopy, Physicomathematical Aspects of Biology, Topics of Radiofrequency Spectroscopy, and Physics of Solids (Radiation Damage in Solids).

Bibliographies

A bibliography of literature on the construction of laboratories and lecture rooms has been compiled by the Netherlands Instituut voor Documentatie en Registratuur (NIDER) working under a commission from the Committee for Scientific Research of the Organization for Economic Cooperation and Development (OECD). The publication, entitled *Laboratories and Lecture Rooms*, contains approximately 650 references to published material on architecture, safety, laboratory equipment, acoustics, heating and lighting, and related subjects.

Copies of the publication can be purchased for \$1 from OECD, Distribution and Sales Service, 33, rue de Franqueville, Paris 16, France.

A monograph and a bibliography on transition probabilities and a bibliography on soft x-ray spectroscopy have been compiled by the National Bureau of Standards and are available from the Superintendent of Documents, US Government Printing Office, Washington 25, D. C.

Experimental Transition Probabilities for Spectral Lines of Seventy Elements (NBS Mono. 53; \$4.25) gives transition probabilities or oscillator strengths for 25 000 spectral lines, about two-thirds of which are from spectra of neutral atoms, and one-third from spectra of singly ionized atoms. The values are derived from Tables of Spectral-Line Intensities (NBS Mono. 32) which reports the lines most commonly encountered in arc spectra between 2000 and 9000 Å.

Bibliography on Atomic Transition Probabilities (NBS Mono. 50; 35¢) is restricted to literature on atomic and ionic transition probabilities of discrete transitions, including permitted (electric dipole) and forbidden (magnetic dipole, electric quadrupole) lines. Also included is a supplementary list of papers dealing with transition probabilities from a general viewpoint, a table showing the availability of numerical material