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THE

FLUCTUA'TION
DISSIPA'TTON

By Joseph G. Hoffman
University of Buffalo

1. Black-Body Moise in Black Boxes

N 1928, J. B, Johnson' showed experimentally

that a resistor with no current flowing in it has

a measurable electrical noise across its terminals.
The signal of the magnitude of a few microvolts is
called noise because when made audible through hi-fi
audio amplifier and speaker, it has a high-pitched
hissing quality. Noise from a current-free metallic
resistor is called Johnson noise, or sometimes thermal
noise, because Johnson identified the voltage fluctuations
across the resistor with thermal agitation of the charge
carriers. His classic experiments showed that the mean-
square-voltage noise signal was directly proportional to
the resistance and the absolute temperature in various
types of solid as well as in liquid resistors,

The first theoretical calculation of thermal-noise
voltage in a resistor was reported by H. Nyquist * in
1928, the same year that Johnson first reported his
experiments. Nyquist's theoretical approach was truly
remarkable, and resulted in a fundamental equation of
physics. He considered a resistor R connected to an-
other similar and equal resistor through a lossless
transmission line. The ideal transmission line thus
permits one to use thermodynamic arguments and
apply the equipartition principle. The resistors may be
thought of as black boxes about which it is known only
that they have an ohmic resistance, R. By calculating
the power emitted and absorbed by each resistor in
thermal equilibrium with the transmission line at a
common temperature, Nyquist succeeded in showing
that the spectral density S(y) measured as a mean-
square voltage is:

S(p)dy = 4kTRdl', {1)

where % is Boltzmann’s constant, 7 is the absolute tem-
perature, and dy is the bandwidth of frequencies meas-
ured. Likewise, the total power P(y) available in the
bandwidth dy is: P(y) = kTdy. Equation (1), known
as Nyquist's theorem, has been substantially verified
by experiment. Moreover, in recent usage it has been
generalized in its theoretical applications and called
the fluctuation dissipation theorem.

THEOREM

The fluctuation thermal voltage arises only in the
resistance and not in the shunt capacitance hidden in
the resistor. Early experiments on capacitors in series
with resistors where the resistor was kept at room tem-
perature and the capacitor temperature varied showed
that the capacitor did not contribute to the noise
voltage. In general, beginning with Johnson's first work,
it became clear that the noise voltage due to an
impedance Z was due to the real part of that impedance.
It is customary now to speak of the “dissipative’ part
of an impedance. The reactive components contribute
no thermal noise voltage. Hence, in the Nyquist theorem
Eq. (1) it is customary practice to write Re[Z(y)]
instead of resistance R so that it becomes S(y)dy =
4kTRe[Z(v)]dv, where Re[Z(y)] means the real part
of Z(lr).

Nyquist’s derivation for the thermal output of a
resistor is based on a one-dimensional Rayleigh-Jeans
analysis, The lossless transmission line connecting the
two resistors is really a one-dimensional black-body
cavity. The Rayleigh-Jeans formulation for a three-
dimensional black-body cavity, it may be recalled,
failed to give correctly the law for black-body radiation
because it diverged at high frequencies in what came
to be known as the “ultra-violet catastrophe”.

The trouble was that the three-dimensional con-
tinuum could be subdivided endlessly to give an over-
whelming preponderance of high-frequency oscillations,
and this same difficulty pertains to the one-dimensional
black body. The integral over all frequencies for the
total noise power diverges if the resistor is pure ohmic
and lacks reactance. Nyquist was fully aware of this,
and pointed out that at high frequencies the equiparti-
tion value for the mean energy of a simple harmonic
oscillator kT is to be replaced by the Planck value for
the mean energy of the quantized oscillator at
frequency y:

E(ﬁp) =13 Uﬂ-t‘Olh (’I;/?kf}] {2]
or:

hy = [exp(hv/kT) — 1] 4 4.
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This substitution is cogent only at very high frequen-
cies; in fact, it applies at frequencies beyond the range
of detection of current practical electronic devices for
noise measurements. A natural question is: why does
the Rayleigh-Jeans method succeed in the one-dimen-
sional case when applied to a supposedly simple resistor
and fail when applied to black-body emissivity?

There are two answers to this question. The first is
that actual resistors are not purely ohmic at all fre-
quencies. The second is that the Rayleigh-Jeans' pro-
cedure does not introduce the reactances that must be
taken into account when charge carriers are in motion
The admittance of the system determines the spectrum
of charge-carrier velocities that can appear as fluctua-
tions.

Concerning the nature of an ohmic resistor, the
simplest approximation found in real resistors is that
the resistor has, in effect, a shunt capacitance across it.
The effect of the capacitance is to impart a frequency
dependence to the resistor such that the integral over
all frequencies converges. Depending on the construction
of the resistor, it may also have hidden inductance. If
one considers that the resistor has only a shunt
capacitance C across it, the equipartition theorem leads
to a value for the mean-square total noise voltage equal
to #T/C. This is independent of resistance R and
provides a macroscopic illustration of the role of
admittance in determining noise magnitude. The hidden
reactive components in real resistors determine the
range of frequencies they may accommodate as black-
body cavities.

2. Specific Models

ONCERNING the second answer given above,
namely, the failure of a Rayleigh-Jeans type of
analysis to introduce the necessary reactances for
charge carriers in motion, there is a need for a specific
model wherein the coupling between radiation field
and charge carriers is indicated. Specific physical
models for the role of electrons in the production of
noise have been proposed. For example, J. Bernamont #
(1937) and later D. A. Bell* (1938) derived the
Nyquist theorem using the Drude model for an electron
gas in a metal. The picture is amazingly simple: the
electrons are independent of one another, they all have
a common constant velocity v, a constant mean free
path, and a constant time between collisions #. The
fluctuation current resulting from one electron is a
series of flat-topped step functions whose time average
is zero. A Fourier analysis for the spectral density of
such a current leads to Eq. (1) if it is assumed that
the electron kinetic energy is the equipartition value:
Amv* = }kT, and the resistance is the classic value
according to the Drude model: R = (mL?)/(e*N§),
where L is the length of conductor containing N in-
dependent electrons.
While this picture of the source of electrical noise
leads to a Nyquist theorem, it has deficiencies that
were pointed out by Lawson and Uhlenbeck ® (1950).
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It does not provide a mechanism to prove that the
distribution of amplitudes of voltage fluctuations is
Gaussian. Moreover, it provides no basis for predicting
whether or not there should be a change of noise
when a current flows in a metallic resistor. The ex-
perimental data indicate that thermal noise is in-
dependent of current in metallic resistors, but that in
nonmelallic resistors there is an excess noise introduced
by a current. At the time, Lawson and Uhlenbeck
stated that a satisfactory kinetic derivation of Nyquist's
theorem had to be formulated, and went on to sug-
gest that the most general theory should be applicable
to an arbitrary system of bodies. It would require the
use of Maxwell's equation in a statistical theory for
bodies in equilibrium with the radiation field.

One way of understanding the curiously successful
result provided by the Drude model is that it as-
sumed no reactive components. The admittance of such
a simple gas of electrons is the dc conductance which
is essentially constant at least up to frequencies of the
order of the reciprocal of the collision time #, in the
vicinity 10'* cps. A system with such an admittance
could be expected to reproduce faithfully a step func-
tion current. It will be recalled that the Fourier trans-
form for the delta function yields a constant spectral
intensity. Nyquist’s theorem as shown in Eq. (1) says
that the spectral intensity for Johnson noise is constant
over all frequencies. Hence, the assumption that the
current due to random displacements of an electron is
representable by a series of step functions tacitly by-
passes the admittance problem (or the impedance
problem, if one considers voltage fluctuations). It
automatically contains the constant spectral intensity
required.

In view of more recent remarkable and sophisticated
developments in noise theory, a discussion of the Drude
model may seem somewhat specious. It does. how-
ever, serve to point up the basic problem of the ad-
mittance as well as to give some historical background.
With the advantage of hindsight, we can discern also
the gradual development of the admittance concept as
another illustration of the finite velocity of thinking;
or perhaps one should call it the rms velocity of think-
ing. The basic problem in calculating noise has been
the description of impedance at the microscopic level
and its relation to the macroscopically observable
impedance. Another way of stating the problem is:
how is the mobility of charge carriers related to noise?

Thus, in the simplest model, an electron subjected to
a random transient force would not give rise to a
step-function current even if the force was a step
function. The neighboring charges and their reactions
would cause the given electron to evince a smeared
out stepfunction response in its motion, The broad
problem, then, in terms of charge carriers, rather than
electrons in metallic conductors only, is to specify the
frequency response of the motion of the charges
and relate it to the macroscopic admittance.

This requires an accounting of the velocity distribu-
tion of the charges in thermal equilibrium, which is

]




32

accomplished usually by assuming that the behavior
of the resistor is not greatly modified by the passage of
a small current. The distribution of thermal velocities
is not changed significantly by the presence of a drift
current because thermal velocities are far greater than
the drift velocities. In short, the passage of a small
current allows one to find the admittance of a system
while it is essentially in a state of thermal equilibrium,

Indirectly related to the determination of admittance
1s a calculation of self-inductance of the aggregate of
electrons in a metallic conductor by Brillouin ® (1934).
The Fermi-Dirac distribution of electron energies is
used in the calculation of the fluctuations A7 comprising
current noise. One sums the magnetic interactions be-
tween electrons and thereby arrives at a value for
the self-inductance of a system of N electrons in a
conductor of length L and cross-sectional area, AA:
L=mL*/Ne*(A4)*. Note that this resembles the
value for resistance R in the Drude model with the
A/2 replaced by (A4)?. The total current fluctuation
in Brillouin's model is:

(M%) = kTNe2(A4)?/mL
or:
(AI%y = kT/L. (3)

(Carets mean average value.) Equation (3) is also the
result one obtains for the total current fluctuation from
Nyquist’s theorem based upon thermodynamic argu-
ments.

The Brillouin calculation is intriguing in that it shows
that reactances inside a conductor may be related to
particle properties. Yet it has to be remembered that
the unretarded magnetic-vector potential used by
Brillouin was valid only for wavelengths large relative
to the cross-sectional dimensions of the conductor,
which makes the result of limited generality. The line
of reasoning is suggestive and provocative, but has
never been exploited and extended beyond what one
might say is an early stage of its development.

3. Fluctuations and Transients

F a linear electrical network is given an input of

the Heaviside step-function kind, the transient
response gives the experienced observer a measure of
the network. The pulse input contains frequency com-
ponents at constant intensity over the entire range of
frequencies. The network has an admittance which is
frequency dependent and will therefore select a range
of frequencies from the uniform spectrum available
in the pulse. On a macroscopic scale the transient
response of the system is unchanged as the step pulse
is decreased in amplitude.

As the pulse becomes very small and microscopic,
and the dimensions of the conductor or resistor be-
come very large compared to the distances covered by
thermal notions of charge carriers, what can one say
about the so-called “transient response’? It should be
noted that there has been no uniform nomenclature

for the myriad current, or voltage, disturbances that
culminate in the signal called noise. One finds the
terms uctuations, transients, pulses, and regression of
a fluctuation used by different workers.

One essential fact that can be inferred about the
submicroscopic fluctuations is that they contain steep
wave fronts. The larger observable fuctuations into
which they merge have the observed high-frequency
components, To some extent there is a filtering effect
in the coalescence of submicroscopic fluctuations into
larger, macroscopic fluctuations in a random process.
The filtering, in general, will be to reduce the very
high-frequency components, Thus, the transition from
the submicroscopic to the observable level is blurred.

A pgeneral method for dealing with the stochastic
process which makes the observed macroscopic fluctua-
tions is that of Langevin 7 (1908): one assumes that
fluctuations in a variable such as current are due to
random driving forces of a fictitious nature, Since they
are fictitious, their magnitude and frequency spectrum
are adjustable as needed. The Langevin procedure may
be said to be heuristic and will be useful until more
information about the submicroscopic nature of fluctua-
tions shows how they are related to the observable
fluctuations.

Interesting concepts of the fluctuations are given by
Callen and Greene ® (1952) and also by J. M. Richard-
son® (1955). We discuss here the latter's use of the
idea of transients as given in his study of noise in
driven systems. He defines a transient as the response
to a physical force in the common usage of network
theory. A voltage pulse applied to a circuit, or element
thereof, gives rise to a transient response. But he also
defines as a transient that which is the result of ob-
servation of a system beginning with certain initial
conditions. This is called a transient response produced
by selection: no physical force is applied. Thus, with
regard to a resistor in thermal equilibrium, the ob-
served transients, namely those produced by selection
(no physical force has been brought to bear on the
system), usually tend toward the equilibrium state.
His second concept of transient then is simply the
manner in which thermal fluctuations decay back to the
equilibrium state.

Richardson’s very general approach led to the con-
clusion that the transient response to a force, ie., a
physical perturbation resulting from a pulse, for ex-
ample, was proportional to the transient response pro-
duced by selection. Since the latter is proportional to
the noise, then, so also is the former. In circuit par-
lance this means that the pulse response is a kind of
measure of the noise as given by Nyquist's theorem.
It has to be emphasized that this result applies to a
system in thermal equilibrium such as one might have
if two equal resistors were connected by a transmission
line and a voltage pulse were applied across one resistor.

The concepts of transient response as used by
Richardson led to an important conclusion concerning
driven systems. A driven system being, for example, a
resistor connected to a dc source such as a battery. In
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a first approximation the resistor with current flowing
i5 in a nonequilibrium steady state. Richardson showed
that the transient response arising from a physical
perturbation of such a system has no relationship to
the transient response of the system produced by
selection. Fluctuations in the driven system have a
transient response which is independent of and logically
distinct from the perturbation response. This result
indicated that the Nyquist theorem as derived for an
equilibrivm  system would nol apply to one in a
nonequilibrium steady stale.

4. The Markoffian System

ICHARDSON'S conclusion that the Nyquist

theorem might not apply to the noise in a driven
system is based on a very general analysis. It assumed
that the system in a state of thermal equilibrium, and
in the driven state, could be described by an appropriate
Hamiltonian for each state. The generality of Richard-
son's method is reminiscent of Nyquist's generality;
the latter used thermodynamic reasoning while the for-
mer examined the various systems' impedance proper-
ties and their effect on transient responses. Also, while
Richardson's conclusion was essentially correct, his pro-
cedure gave no concrete clue about how the noise
would be modified in driven systems; no specific rela-
tion to mobility or involvement of relaxation mecha-
nism is indicated.

Considerable clarification of the basic physics of
driven systems has been provided by Melvin Lax ¢
(1960) in his review of fluctuations from nonequilibrium
steady states. In addition to reviewing the subject of
noise, he crystallizes much of the thinking of recent
years and also presents important generalizations in
irreversible thermodynamics.

Lax’s major assumption is that noise in an irreversible
system is produced by a series of stochastic events of
the Markoff type. The system is therefore called a
Markoffian system, the state of which depends on the
immediately preceding state but not beyond that state
into the past. This is a first-order dependence of the
probability of a state on the preceding history of the
system. A second assumption is that all transition
probabilities are time independent. Hence all dis-
placements are time independent.

In a Markoffian system the present separates the
future from the past. The probability of states in the
future are conditional upon the present state of the
system. Information about states attained in the past
i1s not needed and, as Lax adds, is irrelevant when
available. The bearing of this concept of a stochastic
process on the physical picture was described in 1953
by Onsager and Machlup.’* They pointed out that a
system must be Markoffian if its future depends on
its initial state, regardless of how it came to that
initial state—whether by a spontaneous fluctuation, or
a constraint, or an applied force.

Lax carries out a number of examples of calculations
of noise in semiconductors where the charge-carrier-

N

density fluctuations provide a good illustration of the
Markoffian process. The number of charge carriers
present at the end of a time interval At will depend
on the number present at the beginning of A¢f, as well
as on the recombination rate. The number present at
the end of Af is independent of the previous history of
the numbers of carriers up to the beginning of At.

In order to discuss the microscopic upheaval which
we call a fluctuation, Lax uses an interesting phrase
which is both apt as well as new in noise theory. The
transient decay which follows upon a fluctuation he
calls the regression of a fluctuation. In a material
having a simple relaxation time ¢, Lax's phenomeno-
logical description has the fluctuation transients decay-
ing exponentially, exp(—¢/6) back to equilibrium.
This is a judiciously chosen model for the regression of
a fluctuation. Lax points out that the “true regression”
does not go back to the origin with a finite slope, but
rather forms a cusp such that the slope is zero at £ =0.
The difference between the negative exponential and
the so-called “true regression’ near the origin ¢t =10
provides a measure of the “forgetting time” of the
Markoffian system. The break between the past and
the present occurs in time intervals #, which are much
smaller than the relaxation time 6.

This special property of Markoffian systems in
forgetting the past permits Lax to make a far-reaching
inference about the Nyquist theorem in driven systems,
namely, that a Nyquist theorem always exists for a
Markoffian system. It turns out to be a modified form
of the theorem in that it has a correction factor. A
Nyquist theorem will pertain because a Markoffian
system does not distinguish between the different
physical processes that brought it to its state at
time £ = 0. An initial state of zero-velocity fluctuation
at t=0 could have come about as a result of a
spontaneous fluctuation or alternatively of a force which
has a finite value for ¢ < 0 and is zero for ¢ > 0. The
force may be calculated to produce the initial state of
zero velocity at ¢ =0, and the response of the system
to this force in terms of the admittance leads to a
Nyquist theorem. Thus, displacements independent of
time and the isolation of the past from the future are
properties of a physical system in which a kind of
Nyquist theorem is always wvalid.

Lax shows that the spectral density in Eq. (1) may
be written in one general form as

S(y) = 4kTRC, (4)

where C is the modifying factor which has a variety
of interpretations depending on the system under
consideration.

5. The Modified Nyquist Theorem

Lt\X derives the Nyquist theorem in many dif-
ferent ways with various degrees of generality.
In a particularly neat derivation he states that the
Nyquist theorem relates the noise associated with
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velocity fluctuation at frequency ¢ to the admittance ¥
of the system and shows that for an equilibrium state:

S(w) =4kTRe[V(w)]C, (5)
where
C = (0" ou/{0:%)er (6)

(Carets designate average.) C is the ratio of mean
square of vibration amplitudes in quantum mechanical
terms to that in classical terms, therefore, the mnu-
merator is from Eq. (2) above; L(hw)=(hw/2) coth
(hw/2kT), and the denominator is &7, Hence C be-
comes the universal correction factor: C= (fiw/2kT)
coth (fiw/2kT) which is unity for hw<< kT and he-
comes fiw/2kT for fiw>>kT. When the system is driven
from equilibrium, C is the correction for the mean
energy which has to be determined for the system to
modify the Nyquist theorem.

If the system is considered only for the range of
frequencies appropriate to the classical, nonquantum
mechanical description Eq. (5) can be written as:

S(v,w) = d4m(vv)Re[V(w)], (7)

where V(w) = pl(w)/e is the admittance in terms of
the mobility u(w). At zero frequency the noise is
related to the diffusion constant

D =m (vo) u(o)/e, (8)

where the mobility p at zero frequency is the dc ad-
mittance. The Einstein ** (1905) relation for diffusion
constant is usually written as

D = kT (p/e) = kTL, (9)

where L = v/eE is the dc admittance to the applied
force ¢E, since v = pE is the definition of mobility p.
Equation (7) is one of several general forms of the
Nyquist theorem. In it k7 has been replaced by m(vv).
In thermal equilibrium the kinetic theory value of
m(vv) is a mean square value for kinetic energy and
is kT. The general Eq. (7) is valid for a Markoffian
system in which the regression of a fluctuation decays
exponentially, with the single relaxation constant # of
the system in the exponent: v(t) =exp (—t/f)vlo).
In a nonequilibrium steady state the distribution of
velocities is such that m (vv) no longer equals ET.
This factor occurs in also the Einstein relation [Eq.
(9)] which should be thought of as being multiplied
by a correction factor C={mv*)/kT, where the numer-
ator in carets is an average that has to be determined
by circumstances attending the nonequilibrium steady
state.

The modification of distribution of velocities in the
driven steady state is shown by Lax to lead to the
lack of a relation between noise and admittance in the
sense that Richardson had argued. The equilibrium
distribution of velocities f, is of the Boltzmann form
and obeys the basic relation

af/dv = — (mu/kT)f,. (10)
The left-hand side of this equation is a weight factor

in the determination of the mobility p(w). On the other
hand, the right-hand side is a weight factor determin-
ing noise, The right-hand side of Eq. (10) contains
vf, which is logically distinct and different from
df,/dv. If the distribution f, is modified, when equi-
librium conditions are changed, Eq. (10) no longer
holds. Hence the proportionality between noise and
admittance ¥ (w) = pu(w)/e does not necessarily exist.
This amounts to saying that the special properties of
thermal equilibrium distribution of velocities lead to a
relation between noise and mobility; this relation being
known as the Nyquist theorem. In driven systems the
proportionality between af,/dv and vf, as shown by
Eq. 110) no longer exists.

This is a satisfying result in that it directs one's
thinking to the changes in the distribution of velocities,
In a more general development Lax shows that the
correction factor € may be: C= Slaa)/k, where
(wa) is a fluctvation in the variable «, S is an entropy,
and % Boltzmann's constant. The classic energy term,
kT, no longer appears in the denominator. Lax also
shows that the fluctuation (we) is proportional to kT
and to a dc admittance in general. In a nonequilibrium
state the proportionality is lost and the correction factor
C in terms of entropy above has to be introduced.

Although there is progress in the basic concepts of
noise in driven systems it is not yel possible, for ex-
ample, to speculate that there may be new ways of
defining temperature by noise in nonequilibrium states.
Noise in resistors has been used to measure temperature
in equilibrium situations. However, the nonequilibrium
case has yet to be worked out in detail. Lax indicates
the difficulties by means of an example. An impedance z
is connected to another impedance Z, and z may be
thought of as a load on Z. In thermal equilibrium it is
possible to calculate the noise in z as well as in Z. In
nonthermal equilibrium the calculation is not yet feas-
ible: if the load impedance z has a real part, namely
a dissipative part, it appears to modify the source
impedance Z.
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