followed by problems which can be solved by linear programming techniques. Other methods are suggested, and non-zero-sum and infinite games are described. Thus, a narrow but straightforward development of the subject matter is contained in a few pages.

It would have been nice to have the tie between the simplex method and linear algebra. In compensation, however, there are two appendices: proof of the fundamental theorem of duality and proof of the so-called main theorem of the theory of games.

Advances in Space Science, Volume 2. Frederick I. Ordway, III, ed. 450 pp. Academic Press Inc., New York, 1960. \$13.00. Reviewed by S. F. Singer, University of Maryland.

THE wide scope of space science is illustrated best by the subjects of the six review chapters in this book. They range from space physics to satellite tracking, materials, electrical propulsion systems, and attitude control. The first chapter by Charles P. Sonett on experimental physics using space vehicles is unusually comprehensive (115 pages) and covers the subject matter as well as the techniques in an authoritative and detailed way. There is much important information on instrumentation and detectors for various types of radiations, as well as on the problems of telemetering, and on construction and environmental testing of instrumentation. In all cases, the background is well described; an example is the operation of various types of magnetometers and the discussion of precision and errors associated with them. One suspects that this chapter will prove most useful to any prospective satellite experimenter since it carries the process from design of experiment to environmental testing of the equipment.

The next chapter, by Karl G. Henize, deals with tracking artificial satellites and space vehicles and discusses both radio and optical tracking, with heavy emphasis on optical photographic systems such as have been used at the Smithsonian Astrophysical Observatory. A subject of greater interest to engineers, materials in space, is discussed in the next chapter by Frederick L. Bagby (Batelle Institute).

The two chapters that follow deal with electric propulsion devices. Morton Camac (AVCO) describes plasma propulsion devices, including arc-heated jets, magnetohydrodynamic accelerators, and similar devices. The underlying theory is briefly described and its realization to propulsion hardware is indicated. Ernst Stuhlinger and Robert N. Seitz (Marshall Space Flight Center) discuss electrostatic propulsion systems for space vehicles, dealing, of course, with ion propulsion. This subject is developed in great detail, including the optimization of an ion-propulsion system for various types of missions.

The book concludes with a chapter by Robert E. Roberson (Systems Corporation of America), on attitude control of satellites and space vehicles. The treatment deals mainly with the dynamics aspects of the

OXFORD BOOKS

OF EXCEPTIONAL INTEREST

THEORY OF DIRECT NUCLEAR REACTIONS

By WILLIAM TOBOCMAN. This detailed discussion of the theory of direct nuclear reactions at intermediate energies is based on the Born approximation and distorted wave Born approximation treatments. 18 text figures. (Oxford Library of the Physical Sciences) \$2.40

ELECTROMAGNETIC STRUCTURE OF NUCLEONS

By SIDNEY D. DRELL and FREDERIK ZACHARIASEN. A critical review and analysis of recent studies of the electromagnetic structure of nucleons. The book defines electromagnetic form factors, and discusses the different types of experiments which have given information on these form factors, the recent dispersion theoretic analyses of the form factors, and the validity of quantum electrodynamics. 34 text figures. (Oxford Library of Physical Sciences) \$2.00

NUCLEAR SIZES

By L. R. B. ELTON. Dr. Elton analyzes the large accumulation of data on the size of the atomic nucleus. He discusses the evidence based on electron scattering, electrostatic energy shifts, the scattering of nuclear particles, and on the total energy of nuclei. (Oxford Library of the Physical Sciences) \$2.40

THE PRINCIPLES OF NUCLEAR MAGNETISM

By A. ABRAGAM. This unified, consistent description of the magnetic behavior of assemblies of large numbers of atomic nuclei emphasizes theory although the author compares a large amount of experimental evidence with theory. (International Series of Monographs on Physics) \$13.45

At all bookstores

OXFORD UNIVERSITY PRESS

417 Fifth Avenue, New York 16

problem, including an analysis of the torques which are likely to act on a body in space. This is followed by a brief discussion of attitude sensing, mainly by dynamical devices, although various physical effects are also briefly mentioned. Finally, the attitude control problem as such is described.

The selection of topics in this volume is certainly a very good one. It strikes a nice balance by presenting the state of the art and incipient developments, rather than veering off too much into the future.

Les Séries et leur Application à la Résolution de divers Problèmes pratiques d'Analyse mathématique, Volume 2. By C. Meynart. 116 pp. Eyrolles, Paris, 1960. 29.20 NF. Reviewed by J. Gillis, The Weizmann Institute of Science.

A SEQUEL to Volume 1 of the same work, this book is mainly devoted to an exposition of elementary methods for solving differential equations by series. In addition, there are some examples of the use of series for calculating various integrals. The whole is on a very elementary level with a careful avoidance of all complications. Differential equations nearly all have constant coefficients, and the idea of a singular point is never mentioned. It is hard to believe that this book answers all the questions of the engineers, but it does convey a considerable amount of elementary information in words of very few syllables. The chapter on big computing machines is quite breathtakingly out of date. There are some useful tables and some very interesting and practical diagrams.

The Passage Problem for a Stationary Markov Chain. Vol. 1 of Statistical Research Monographs. By J. H. B. Kemperman. 127 pp. The U. of Chicago Press, Chicago, Ill., 1961. \$5.00. Reviewed by George Weiss, University of Maryland.

THE Markov process has long been used in physics to study the behavior of systems with large numbers of particles, since the Markov process is the simplest probabilistic process which mimics deterministic mechanics in which initial conditions completely determine the future state of the system. Probably the first explicit use of Markov processes in physics was the Ehrenfest model. Since the early studies of this model there have been many others carried out on the same or similar models; more recently there has been a good deal of interest in Markov systems as applied to chemical kinetics. In all of these problems the calculation of the statistical properties of first passage times is of central importance.

Kemperman's book contains a good survey of recent work on the first passage time problem for Markov chains. This type of problem appears in many guises in mathematical statistics, and there are many recent results, particularly on the asymptotic properties of the first passage time, which might be of considerable interest in physical applications. Unfortunately it will be difficult for the physicist to get the information from this book since it is written for the statistician with a good acquaintance with the literature.

In the first few chapters, Kemperman deals with fundamental parameters characterizing Markov chains and first passage times. The formalism is then applied in some detail to the Ehrenfest model. The following chapters consider the proof and consequences of Wald's identity in sequential analysis (which allows calculation of asymptotic absorption probabilities for random walks with absorbing barriers), some recent work on combinatorial problems, and brief applications to queuing theory and collective risk theory (the theory of the insurance firm). Since the work is limited to Markov chains, no mention is made of recent interesting work of Kac on occupation times for particles in Brownian motion.

An Introduction to the Theory of Vibrating Systems. By W. G. Bickley and A. Talbot. 238 pp. Oxford U. Press, New York, 1961. \$4.80. Reviewed by T. Teichmann, General Atomic Division, General Dynamics Corporation.

WHILE the mathematical techniques required to deal with vibrational phenomena are independent of their physical origin, the governing equations are not, and this has led to the tendency to treat vibrations of different types on an individual basis depending on their origin. Rayleigh's work, of course, is a notable exception, and recently there have been others, though at a relatively advanced level. This book aims at a unified presentation at the undergraduate level, which is most desirable both from the esthetic and conceptual points of view.

The treatment given is distinguished by a number of useful and unusual features-at least at this level. These include a strong accent on energy methods and approximate techniques (Rayleigh's method). In the latter case the theory is presented rather heuristically but this is compensated by the extended treatment of examples throughout the text. The analogy between electrical and mechanical systems is brought out, without being unnecessarily belabored, while on the other hand the question of reflected waves in continuous systems is given the careful treatment it warrants but does not always receive. The mathematics is also carried further than usual in the discussion of the orthogonality of normal modes, and in the comments on nonlinear vibrations. A defect, in the opinion of this reviewer, is the unnecessary and inappropriate introduction (and frequent use) of the term "pulsatance" for angular frequency!

Examples are woven through the text, and exercises presented at the end of each chapter (with answers). The mathematics, which is elementary to start with, becomes more sophisticated as the book progresses, and the topics and manner of discussion should prove interesting even to the familiar reader, and certainly useful to the student.