

This logic array has been developed in the Remington Rand Univac Mathematics and Logic Research Department. In simplified form, each circle represents a film element that AND's the bits from the horizontal and vertical lines to produce an output on the diagonal line. The input word is therefore left-circular shifted S places in passing to the output. Such matrixes can produce arbitrary right or left shifts, either cir-cular or open-ended, in a single clock period for full length computer words. Film logic arrays open a new field of high speed, high density logic devices.

No where in the computer industry will qualified applicants find greater opportunity for both personal and professional reward than they will today at Univac. Highly significant positions involving work such as that outlined above are now available. You are invited to investigate them immediately.

SAINT PAUL, MINN.

COMPUTER APPLICATIONS ANALYSTS - ENGINEER WRITERS COMPUTER PROGRAMMERS - MILITARY SYSTEMS ANALYSTS COMPUTER LOGICAL DESIGNERS

For the above positions in our St. Paul, Minn. laboratories, send resume of experience and education to:

R. K. PATTERSON

Remington Rand Univac . Univac Park . St. Paul, Minnesota

SAN DIEGO, CALIF.

- SYSTEMS TEST & EVALUATION ENGRS.
- COMPUTER PROGRAMMERS
- MILITARY SYSTEMS ANALYSTS

For data extraction & reduction, debugging of equipment & systems integration.

The above positions are now available at Remington Rand Univac in San Diego. Send Resume of experience and education to:

WILLIAM LOWE Remington Rand Univac • P.O. Box 6068 • San Diego, Calif

Remington Rand Univac

DIVISION OF SPERRY RAND CORPORATION

There are also immediate openings in all areas of digital computer development at our other laboratories, Inquiries should be addressed to: F. E. NAGLE Rem. Rand Univac P.O. Box 500 Blue Bell, Pa.

J. R. STAHL Rem. Rand Univac 315 Fourth Avenu

Qualified applicants considered regardless of race, creed, color or national origin,

with fast-neutron cross sections, neutron capture, and nonneutronic fission. The last two sections are on general fission processes and fission-fragment studies. A total of 66 papers makes this an important review of the basic physics of neutron and fission processes of ultimate interest to engineers as well as physicists.

The format of these volumes is conducive to easy reading (pages measure 8" × 11" and are of heavy glossy stock that enhances the many photographs which are included). It should be noted, too, that each paper has only a minimum number of references; the documentation is not obtrusive, yet there is such a wealth of information imparted as to make the work encyclopedic. These are highly desirable volumes and are recommended as standard source material in nuclear physics.

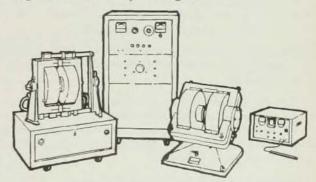
Impact. The Theory and Physical Behavior of Colliding Solids. By Werner Goldsmith. 379 pp. (Edward Arnold, London) St Martin's Press Inc., New York, 1960. \$17.50. Reviewed by J. M. Walsh, General Atomic Division, General Dynamics Corporation.

A SUMMARY of the literature, both experimental and theoretical, on the subject of solid-solid collisions is given in Impact. The subject is reviewed in its successively more refined approximations, beginning with the elementary case in which all of the deformation and vibrational aspects of the collisions are replaced by a single empirical (and tremendously simplifying) coefficient of restitution. Elastic vibrations arising from impact are then discussed, followed by a chapter on local deformation in the contact region. Collisions that involve extensive plastic deformation are the subject of Chapter 5, which is some thirty percent of the book. Two final chapters are devoted to a more complete coverage of the experimental data from impact tests; special attention is given to the evidence that dynamic strengths surpass the static analogs.

The appearance of this substantial contribution by Professor Goldsmith hardly means that the subject is a well-developed field of applied physics. Rough approximations are still needed to interpret collisions involving large plastic deformation, and areas of extensive experimental study, such as many aspects of bulletplate interaction, yield only to descriptions which are admittedly phenomenological. Reasons for this seemingly modest level of understanding are not hard to find. The simplest laboratory collision experiments (once the limits of linear elasticity are exceeded) should be analyzed as nonlinear time-dependent flows in two or more space variables. Such calculations are only recently being accomplished for fluids, where one has a nonrelaxing scalar equation of state. For solids, a tensorial equation of state must be used if material strength is to be retained, and this stress-strain relation must be taken as irreversible if plastic deformation is to be explained. Finally, the evidence indicates that a time-dependent equation of state may be desirable in

ADJUSTABLE AIR GAP/ROTATABLE 6" LABORATORY MAGNET

Rotate and adjust the air gap easily and precisely



Continuously adjust air gap widths from zero to 6", as well as rotate the magnetic field over a 200° arc with reference to the vertical, using the new Varian V-4007-2 laboratory magnet. Field homogeneity reproduces accurately after gap adjustment, since the gap-adjusting assembly maintains precise axial alignment and parallelism throughout total pole cap travel. Field strength and homogeneity can be quickly verified using the Varian F-8 Fluxmeter. Traditional Varian design foresight makes the gap-adjusting assembly compatible for fitting to all Varian 6" rotatable magnets presently in use. And, of course, the new V-4007-2 can be converted to the V-4007-1 configuration when the homogeneity of this most rigid magnet is a requirement.

A complete magnet family with accessories

Varian's V-4007-1 rotatable and V-4007-fixed-azimuth 6" magnets complement the new V-4007-2 to provide the most complete line of 6" laboratory magnets available. Select the system that precisely matches your field-volume/strength/homogeneity needs from these three versatile 6" types, and Varian's 4" adjustablegap, 12" adjustable-yoke, 12" rotator and new 22"

high-field laboratory magnets. Matching regulated power supplies, a wide range of pole cap options, a fluxmeter-control unit, rolling and rotating bases, support tables and other accessories, plus a world-wide service engineering organization, make Varian the logical choice for all your magnet needs.

V-4007 6" magnet yoke is adjustable about the horizontal axis. Air gap width is adjusted with precision yoke-separating spacer blocks. V-2200A (shown), V-2100B power supplies furnish precisely regulated power to Varian's 6" and 12" magnets. Matching regulated power supplies are available for the complete Vacuum grapet line.

rotates around the vertical axis and uses pole caps of various thicknesses for air gap adjustment The F-B Fluxmeter provides precise measurement and/or control of magnetic fields as an agnetic fields as an agnet systems and readily adapts to

For further information, write Instrument Division

New Eastern office: 12 South Michigan Avenue Kenilworth, New Jersey • CHestnut 1-0200

WAVELENGTH REJECTION FROM X-BAND TO X-RAY

MONO PASS

INTERFERENCE

Optics Technology offers filter sets covering the range of 400 millimicrons to 1.75 microns to meet your requirements in spectral analysis. These MONOPASS interference filter designs reject from X-band to X-ray! The possibility of spurious results is eliminated as only the desired wavelength is passed. Calibration curves for each filter pinpoint accuracy. The curves for each set are laminated in plastic and bound in a rugged volume.

Visible Spectrum Set 10A* includes ten MONOPASS filters to isolate principal lines as K, Ca, Hg, etc., from 706 millimicrons to 404 millimicrons, important in flame chemical analysis. Four neutral density filters and a linear spectral "wedge" filter are included. Price, \$325.00.

Visible Spectrum Set 12A* includes ten MONOPASS filters uniformly spaced from 400 millimicrons to 700 millimicrons, as well as four neutral density filters and a linear spectral "wedge" filter. Price, \$325.00.

Infrared Set 15A includes ten MONOPASS filters spaced at every 0.1 micron between 0.8 micron and 1.75 microns. Price, \$450.00.

Infrared Set 20A includes ten interference filters on 1" diameter substrates spaced at every 0.1 micron between 1.75 microns and 2.75 microns. These filters are blocked out to 3.2 microns on the long end and to X-ray on the short end. Price, \$450.00.

*Distributed through Central Scientific Company

OPTICS TECHNOLOGY, INC

some applications. In view of such complications, it is not surprising that our understanding of collisions has increased only slowly, and that a general summary must consist largely of tentative conclusions from rough theories of the flow.

The book is a successful exposition of the many contributions to an understanding of collision phenomena. The pertinent models of the flow for each type of collision are described, critically evaluated where possible, and compared with the experimental findings. The discussion is enriched by frequent tables and figures which exhibit properties of real materials.

The author, perhaps judiciously, does not attempt to fit the subject within the framework of a unifying theoretical development. Also, the derivation of fundamental relations, such as the Hertz law of contact, sometimes seems excessively sketchy. However, simple collision theories are frequently illustrated with examples. And the discussion is rounded out by the author's appraisal of the various theoretical attacks.

Finally, the work is not free from the errors that often accompany such a sizable undertaking. Thus, the implications of incompressibility and constant compressibility are occasionally confused, and the well-understood centered rarefaction is treated as a shock in Chapter 5. These and lesser oversights, usually an occasional remark which could be more exact or specific, might have been eliminated by a careful technical editing. The attendant difficulties, however, will not be severe for the research worker in this field.

The book has considerable value both as a contemporary summary of the literature and a guide to the six hundred or so references which are cited.

Hypersonic Flow. Symp. Proc. (Colston Res. Soc., Univ. of Bristol, April 1959). A. R. Collar and J. Tinkler, eds. 432 pp. Academic Press Inc., New York, 1960. Reviewed by Allen I. Ormsbee, University of Illinois.

FIFTEEN papers and attendant discussions concerning a broad range of problems in hypersonic aerodynamics are contained in this volume. Complete descriptions of hypersonic flow facilities and the results of some specific experiments at many of the major installations in the West are included, as well as separate presentations by Mangler and by Van Dyke on the numerical solution to the blunt-body problem for a given shock wave, and papers on Newtonian flow, boundary-layer combustion in shock tubes, nonsteady aerodynamics of wings and panels, hypersonic vehicle design, and hypersonic air-breathing engines.

The disparateness of the subjects treated does not detract from the collection, for it helps to offset somewhat the repetition in descriptive material contained in some of the experimental papers. Every author has the right and the responsibility to be sure that his audience has a clear understanding of the geometry and function of his experiment; however, when reports of several experiments using similar apparatus are published under one cover, it does seem that some equitable arrange-