tion of Green's function are developed very carefully and clearly. The well-conceived problems at the end of each chapter help to supplement the theory of that chapter. The value of the book is also considerably enhanced by the numerous references at the end of each chapter.

It is safe to say that this book will enjoy a very wide sale and use and that it will shortly become a classic along with Stratton's *Electromagnetic Theory*. Professor Collin is to be congratulated for such a definitive job of presenting the field theory of guided waves to the harassed graduate student.

The Fundamental Atomic Constants. By J. H. Sanders. 88 pp. Oxford University Press, New York, 1961. Paperbound \$1.60. Reviewed by William F. Meggers, National Bureau of Standards.

BECAUSE physical measurements are constantly improving and atomic information is rapidly increasing, we must expect new books on atomic constants, atoms, and particles. Unfortunately, most of them are out of date before they are printed.

The Fundamental Atomic Constants is an erudite but brief description of direct and indirect experiments and calculations leading to the presently accepted values (1955) of the electronic charge e, Avogadro's number N, the Faraday F, Planck's constant h, the specific charge of the electron e/m, the ratio h/e, the Rydberg constant R, the masses and magnetic moments of the electron and proton, and the ground states of hydrogen and deuterium. The velocity of light is discussed in greater detail because it is the constant directly measured with the highest precision (1 ppm). References are given to 193 pertinent papers, but an important verification of the accepted value of the Rydberg constant [William C. Martin, Phys. Rev. 116, 654 (1959)] is omitted. This booklet was written too soon to report that the meter has been defined in terms of Kr86 wavelengths and that all atomic weights are now based on $C^{12} = 12.0000$ instead of $O^{16} = 16.0000$, improvements that will require further revision of some of the socalled "constants" of physics. In any case, this booklet will be a good guide for graduate physics students or anyone interested in constants.

Theoretical Physics in the Twentieth Century, A Memorial Volume to Wolfgang Pauli. M. Fierz and V. F. Weisskopf, eds. 328 pages. Interscience Publishers Inc., New York, 1960. \$10.00. Reviewed by Nandor L. Balazs, Princeton University.

THIS volume is a beautiful memorial to Wolfgang Pauli and a reminder of the fragility of human fate. As the editors relate, several years ago a volume was planned to celebrate the sixtieth birthday of Pauli; the aim was to summarize the progress in those topics of physics which were near to Pauli's heart, and to discuss Pauli's influence on the development of physics

during the 1930's. However, what started as a celebration turned into a memorial with Pauli's untimely death. This change in the course of events makes it understandable that the only contributions which deal with Pauli himself are a brief preface by Niels Bohr and a bibliography of Pauli's papers by C. P. Ens, since no epitaph can be written for a living person.

"Man soll keine Irrlehren verbreiten" was one of Pauli's favorite remarks and most contributions were written in this spirit. R. Kronig, W. Heisenberg, and B. L. van der Waerden deal with the early history of quantum mechanics and the exclusion principle. The articles which deal with physics itself fall in several classes. G. Wentzel gives an account of quantum field theories until 1947; the elimination of divergences from quantum field theory is discussed by F. Villars; R. Jost's article is a magnificent exposition of the relation between the exclusion principle and the Lorentz group; the theoretical and experimental developments concerning the neutrino and the nonconservation of parity is the object of C. S. Wu's note; L. Landau contributes a terse discussion on the fundamental problems one encounters in field theories with strong interactions. (There is a remark by Landau on page 246 which could reflect not only his but Pauli's attitude as well; "The brevity of life does not allow us the luxury of spending time on problems which lead to no new results.") H. B. G. Casimir and R. E. Peierls each contribute on solid-state physics. V. Bargmann describes Pauli's work in relativity, omitting, however, one of Pauli's basic contributions to unified field theories, to wit, his brief remark: "What God hath put asunder no man shall join."

Advances in X-Ray Analysis, Volumes 1, 2, 3. Conf. Proc. (Denver, Colo., Aug. 1957, 1958, 1959, respectively). William M. Mueller, ed. Vol. 1, 494 pp. Vol. 2, 359 pp. Vol. 3, 376 pp. Plenum Press, Inc., New York, 1960. Vols. 1 & 2, \$8.50 each; Vol. 3, \$12.00. Reviewed by H. A. Liebhafsky, General Electric Research Laboratory.

IN 1951, Professor Fankuchen was on the summer faculty at the University of Denver, and his presence led to the one-day symposium on x rays out of which has grown the Annual Conference on Applications of X-Ray Analysis, the eighth conference having been held in 1959. The volumes under review are a partial record of the conference proceedings, one for each year as indicated above. None of the volumes contains all of the papers presented at a conference, but so great is the variety of applications in each case that the omissions do not seem serious.

The scope of the conferences is widening, and it should soon include all ways of applying x rays to yield information and all the equipment this requires. Volume 3 not only contains papers dealing with the determination of elements by methods based on x-ray absorption and emission, but it also includes a paper on microscopy by total reflection of x rays, several on diffractometry