like a zipper that cannot be pulled up the last inch. In "Mutations of Science" he attempts to close this gap (the last century of science) by picking a vital spot for microscopic examination that will reveal the character of the period. Chosen for examination is Roentgen's discovery that "split open the world of physics"; but the curious error of N rays is also recounted. The intent or conclusion of this chapter is less clear.

Physicists who heard Professor Price's prepublication presentation at the AAPT meeting in February seemed to find a wry satisfaction in his diagnosis of the "Diseases of Science", the most quantitative, forward-looking, and disturbing of the essays. Science in its youth is shown to benefit from an exponential law of growth, only to be strangled in its maturity by a saturation limit. Science's superabundance of literature, its manpower shortages, its increasing specialization, its tendency to deteriorate in quality are presented as symptoms of a general disease. That disease might be understood better through the efforts of historians of science: "Even if we could not control the crisis that is almost upon us, there would at least be some satisfaction in understanding what was hitting us."

Laboratories in the Classroom. New Horizons in Science Education. 96 pp. Science Materials Center, Inc., New York, 1960. Paperbound \$1.45. Reviewed by Ira M. Freeman, Rutgers University.

In the twenty-five short essays that make up the column under review, prominent American science educators have attempted to answer the questions: "What are the basic aims of science and mathematics education?" "What plans are being made to develop new curricula?" "What new procedures and materials are being considered?"

Names of some of the authors will be familar to many physicists who are concerned with teaching— Paul Brandwein, Fletcher Watson, Morris Meister, Alfred Bender, and others. Most of the pieces have been written expressly for this book; a few have been adapted from earlier publications.

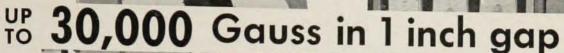
The individual contributions touch on a wide variety of problems connected with the teaching of science in the elementary and secondary schools. Some of the topics that receive attention are creativity in science teaching, the provisions of the National Defense Education Act, TV in science teaching, club programs in the schools, teacher training, summer programs, and mathematics education.

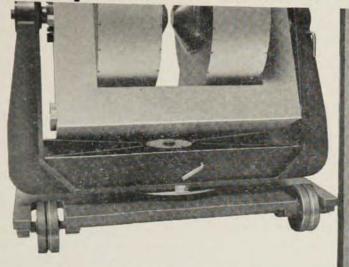
In spite of their brevity, most of the articles are stimulating and informative. The reader who may not actually be engaged in school science education will come away with a definite impression that this field is now beginning to receive the intensive and serious kind of rethinking that it has needed for so many years. There is, for one thing, the growing realization among science teachers, administrators, and even school boards of the necessity of planning a coordinated science pro-

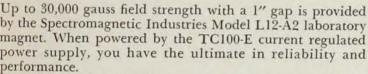
gram extending from kindergarten through the twelfth grade. It is hoped that increasing awareness of this need will enlist the interest and talents of people who are in a position to devise much-wanted substitutes for the haphazard, dull, and repetitious mishmash that still passes for a science program in many of our schools.

In this connection, Fletcher Watson points out a real danger. Under the pressure of immediate needs, the field may come under the influence of "numerous groups, largely composed of educational amateurs, who are concerned with only a small segment of the most able students", and in place of a workable program for the long run, we may be saddled with "improvisations dominated by the personal enthusiasms of a few people for a particular subject, approach, or portion of the student population". These remarks may remind some physics teachers of one recent effort that has succeeded in creating more than a mere ripple, thanks to the great sums of money placed at its disposal and the zeal of its originators.

An Introduction to Celestial Mechanics. By Theodore E. Sterne. Vol. 9 of Tracts on Physics and Astronomy, edited by R. E. Marshak. 206 pp. Interscience Publishers, Inc., New York, 1960. Clothbound \$4.50, paperbound \$2.50. Reviewed by S. F. Singer, University of Maryland.


OF a number of recent works that I have read which deal with celestial mechanics, this appears to be one of the very few which is suitable for teaching and self-education. But it has another virtue: it presents about all that is necessary and useful, e.g., to physicists who through no fault of their own have been "propelled into space" from nuclear physics, quantum field theory, and similar "classical" endeavors.


The author is not without a sense of humor. He recommends this book to a beginning graduate student who has concentrated in physics and "is presumed to know Newton's second law, but not Kepler's". In fact, however, the student should have had a course in mathematical physics and theoretical mechanics, at least up to the level of Hamiltonians, in order to absorb the material profitably.


The first half of the book is indeed written at a fairly elementary level. Astronomical notation is used throughout, and units are carefully defined. A particular feature is the addition of a large number of worked-out problems. It is easy to see that the author has a great deal of experience with the solution of satellite orbit problems and applies this experience to the writing of the book. A good example of the careful attention given to an important subject is the referencing of the information on the value of the astronomical unit.

The discussion is very concise. Most of the orbit problems which one faces in conventional space travel problems are compressed into twelve pages of text. The eighteen worked-out examples really illustrate how to use the information. This is important both for a student

2 in. "SPECTRO" lab magnet delivers

Spectromagnetic Industries laboratory magnets are available in 4"-6"-12" (high impedance) as well as the 12" (low impedance) model illustrated above.

Current regulated power supplies are available in a wide range of capabilities, each series designed specifically to provide the maximum in control and reliability. Current regulation can be held to 0.1%-0.01% or 0.001%, as desired.

The design team that has created this fine family of standard laboratory instruments is available to solve any custom design

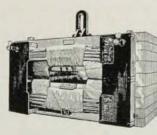
problems you might have.

For complete specifications of the entire line of Spectromagnetic Industries laboratory magnets and power supplies, use the coupon below.

LAB MAGNET FEATURES Highly Uniform Fields

- Sectionalized Coil Design
- Precise Mountings

POWER SUPPLY FEATURES


- Precise Regulation
- Generous Safety Factors
- Field Sweep and N.M.R. Input Provided

0° Beam Analyzing Magnet

60 CM Broad Range Spectrograph

29" x 36" Deflecting

	SPECTROMAGNETIC INDUSTRIES P.O. Box 3306, Hayward, California
1 1	Gentlemen: Please send me literature on ☐ Lab Magnets ☐ Power Supplies ☐ Spectrographs ☐ Analyzing Magnets ☐ Deflecting Magnets
1	Name
1	Organization
1	Address
1	City & State
1	Position
L	

SPECTROMAGNETIC INDUSTRIES

25393 Huntwood Ave. • Hayward, California • Telephone EL 7-1350

VARIAN ASSOCIATES

Leading Research, Development and Manufacturing Electronics firm with headquarters near Stanford University in Palo Alto, California is seeking a qualified INSTRUMENT APPLICATIONS ENGINEER to maintain a field office in CHICAGO.

Will cover entire Mid-West area in the development of Applications and Maintenance of Sales Contacts for MAGNETIC RESONANCE SPECTROMETERS. Communication with potential customers is at high technical levels and our representative will be expected to take an interest in the customer's particular problem.

The man we are seeking has a strong background in organic and physical chemistry and some experience in instrumentation and basic physics. He must have a good knowledge of the Mid-Western area and be willing to travel. Previous sales experience is desired, but not essential since training will be provided in our laboratories in Palo Alto, California.

If you feel that you meet these qualifications and are interested in associating with a dynamic growth Company, already well established as a leader in its field, please write for further information, including a detailed copy of your resume and salary history to:

INSTRUMENT APPLICATIONS

All inquiries will be acknowledged. All qualified applicants will be considered without regard for race, color, creed, or national origin.

Special Supplement—October Issue— Journal of Applied Physics

SEMICONDUCTING COMPOUNDS

The complete Proceedings of the recent "Conference on Semiconducting Compounds" held June 14–16 at the General Electric Research Laboratory, Schenectady, N. Y. will be published as a special Supplement to the regular October issue of JAP.

The Conference, under the joint sponsorship of the U. S. Air Force Office of Scientific Research and the General Electric Company was the first in its field. The conference synthesized a large body of existing experimental information, relative to energy band structure, transport (including tunneling) and optical, galvanomagnetic and resonance phenomena. Emphasis was placed on 3–5 and 2–6 compounds with some discussion of the 2–5 and 5–6 materials. Over 50 papers were presented and will be published in the Special October supplement.

Advertising in the Supplement will be accepted and interested manufacturers should write to Mr. T. Vorburger, Advertising Manager, JAP, 335 East 45th St., New York 17, N. Y. for details. Closing date for advertising is September 3rd.

and for someone who wishes to make practical application of celestial mechanics. The attraction of irregular bodies is much compressed and presented in a very concise form compared to Moulton's classic text. Again, of great usefulness to a physicist who is not trained as a "spherical astronomer" is the discussion of coordinates and time systems. It is practical throughout, with a good many examples given. The discussion of precession and nutation will be of particular interest to the physicist who wishes to acquire the pertinent information rapidly, but it is presented in too short a manner.

The last three chapters are more advanced and of less general interest. They deal with general perturbations, with the particular perturbations involved in artificial earth satellites including the effect of atmospheric resistance and nonspherical shape of the earth, and finally a chapter on numerical integration of orbits and special perturbations.

There are a number of topics missing which one would very much like to see discussed even in an introduction to celestial mechanics; for example, the valuable geometrical discussion of perturbations (à la Moulton) which is based on impulsive perturbations of the orbit, if possible with sketches to illustrate the points involved, and fix them in the mind of the reader. Then again, a discussion of tidal forces and spheres of influence (à la Tisserand and Fessenkov) might have been very valuable. The restricted three-body problem is not discussed but, of course, there are many adequate references for it and it does not have too much importance in celestial mechanics as such. However, the problem of Jacobi capture of a small third body into a rotating two-body system would have been worth including. Another topic which could perhaps have been brought out in detail would be a discussion of the lunar motion.

But one should not expect to find all important problems in this slim volume. What is included is extremely well described and is of great topical importance in the application of celestial mechanics to modern problems. The book can be recommended most warmly and adds considerably to the luster of the Interscience Tracts on Physics and Astronomy, which is already fairly high.

The Moon. Our Nearest Celestial Neighbor. By Zdeněk Kopal. 131 pp. Academic Press Inc., New York, 1960. \$4.50. Reviewed by D. Keefe, Lawrence Radiation Laboratory.

PROFESSOR Kopal, who is head of the department of astronomy at Manchester University, has recently embarked on the elaborate program of a precise contour mapping of the surface of the moon. This painstaking task will take many years and involves a study of multiple exposures of sunrise and sunset over the lunar landscape. His preoccupation with what the moon really looks like at close quarters emerges clearly in his book; the author's own excitement in trying to