

SENIOR SCIENTISTS AND ENGINEERS

Our expanding research and development efforts and our broadening interests have created interesting and challenging positions for individuals who have proven records of accomplishment in the following fields:

SURFACE PHYSICS AND CHEMISTRY
ELECTROCHEMISTRY
ELECTRON MICROSCOPY
MAGNETIC THIN FILMS
DEVICE DEVELOPMENT
EVAPORATED CIRCUITRY
SEMICONDUCTOR MATERIALS
DIFFUSION PROCESSES
ELECTRO-OPTICS
ADVANCED CIRCUIT DEVELOPMENT

These positions require men with Ph.D. degrees or equivalent experience.

Interested applicants are invited to send detailed resumes, including salary history and requirements, to Mr. Donald Palmer. Palo Alto interviews for qualified applicants will be arranged from anywhere in the United States. All inquiries strictly confidential and acknowledged promptly.

844 CHARLESTON ROAD . PALO ALTO, CALIFORNIA

19th century. A minor comment: since the scattering of charged particles is discussed, reference to Rutherford's original papers would be useful.

Only too often, mechanics is taught as an exercise in applied mathematics, with ingenious problems of a highly artificial nature and unrelated to physical reality. Special mention should thus be made of the problems at the end of each chapter. These are both numerous and well chosen. Answers are provided to alternate problems.

In all, there is much to commend in this book. It is to be hoped that there will be a third edition, and that it will include a section on special relativity.

Special Relativity. By W. Rindler. 186 pp. (Oliver and Boyd, London) Interscience Publishers, Inc., New York, 1960. \$2.25. Reviewed by D. J. Montgomery, Michigan State University.

"Is this text necessary?" should be embroidered on the pillows in publishers' offices and professors' studies. Happily Rindler's book brings an affirmative answer, even though one might have thought that the field of introductory texts in special relativity was well worked out. Among its companions that are modest in size and price, the complementary pair of Methuen Monographs (McCrea's Relativity Physics, 4th edition, 1954; Dingle's The Special Theory of Relativity, 1940, reprinted 1955) covers about the same topics in nearly the same amount of space. Rindler, however, develops the major part of his treatment with use of tensors, with the accompanying elegance and economy and power, and the concomitant increase in demand on the student. We shall not compare Rindler's text with the costlier ones, beyond saying that his needs no apologies.

The development is highly systematic, beginning with foundations, and going through kinematics, optics, mechanics of particles, electrodynamics, and mechanics of continuous media. Clearly, the author thinks for himself most of the time, both in physical interpretation and historical evaluation, and consequently some readers will disagree with him from time to time. Perhaps the most objectionable part is the treatment of the clock paradox.

Despite his professional affiliation (Rindler is a British-trained mathematician now on the staff at Cornell University) and the appearance of the work among the University Mathematical Texts, he gives predominance to the physicist's point of view. The only place that the author's training misleads him, it seems to the reviewer, is in overestimating the mathematical ability of beginning students to assimilate the necessary tensor analysis. The basic tensor theory is presented concisely in 11 pages of an appendix. There the results are neatly gathered, but the bare bones are not apt to be nourishing to the intended audience.

Altogether, a very good book has been produced. It is refreshing that a publisher can bring out a work displaying independence of thought, care in analysis, and elegance in presentation, all at a reasonable price.