lites (Newell), (4) The Sun's Ionizing Radiation (Friedman), (5) The Airglow, (6) General Character of Auroras, and (7) The Auroral Spectrum and Its Interpretation (Bates), (8) Radar Studies of the Aurora (Bosher), (9) The Ionosphere (Ratcliffe and Weekes), (10) The Upper Atmosphere and Geomagnetism (Vestine), and (11) The Upper Atmosphere and Meteors (Greenlow and Lovell). Each chapter represents an authoritative, detailed review with an adequate set of references to the important papers published. The advances made during the IGY have led to the addition of a separate chapter in which some of the more recent contributions are described. Consequently, this text is valuable not only to the specialist but also to the worker who wishes to get acquainted with the subject with the least expenditure of effort.

The contents of this book reflect our present state of knowledge or lack thereof. Also, the information presented points to some of the yet unresolved problems, as for example, the chemical kinetics of the species found in the upper atmosphere, which are responsible for such phenomena as the airglow. In this area rapid progress is to be expected during the next decade, stimulated in part by the authors of *Physics of the Upper Atmosphere*. It is hoped that by that time the scientific workers will have come to an agreement on atmospheric nomenclature.

Perhaps one would expect that the contribution of eleven authors to eleven chapters of this book would result in a series of independent, unrelated monographs. Yet due credit must be given to the editor (who is also the author of one chapter) for his skillful fitting together of the individual pieces, so that the book is more than an assemblage of unrelated sections.

Frozen Free Radicals. By G. J. Minkoff. 148 pp. Interscience Publishers, Inc., New York, 1960. \$5,00. Reviewed by Stuart A. Rice, Institute for the Study of Metals, The University of Chicago.

In the past few years remarkable progress has been made in the study of unstable atomic and molecular species. One of the most useful techniques has been the matrix isolation of free radicals, the subject to which the book under review is addressed. It has long been apparent that an authoritative treatment of this subject would be extremely valuable. Unfortunately, brief perusal of Minkoff's monograph clearly indicates that such a treatment is still needed.

In almost all respects I have found this book unsatisfactory. The section dealing with experimental methods is over-abbreviated and superficial. For example, the information given on low-temperature technology is insufficient to allow the novice either to build or find in the literature suitable apparatus of general character for work in this region, although the details of some very special apparatus are discussed. The treatment of radical detection would charm a layman, but does not give any real information to the student.

A major fraction of the book is given over to review-

Some REVIEWS of the LANDAU-LIFSHITZ books

On Quantum Mechanics:

"A magnificent contribution to the pedagogy of physics . . . a boon to the present and to many future generations of graduate students as well as their instructors."

Physics Today

On Statistical Physics:

"This reviewer's expectations were high, and they were not disappointed! The new book is quite admirable for many reasons. It gives a really unified treatment of statistical physics and thermodynamics . . . presents the subject as a fundamental and very live branch of physics with striking new developments. . . The course of theoretical physics is in the great tradition, . . ."

American Journal of Physics

On Fluid Mechanics:

"The authors have tried to develop as fully as possible all matters of physical interest . . . some topics not usually found in textbooks are treated, such as the theory of heat transfer and diffusion in fluids; acoustics; the theory of combustion; the dynamics of superfluids; and relativistic field dynamics."

Journal of Applied Physics

On Theory of Elasticity:

"Presents the basic equations governing the information of a homogeneous continuum experiencing small displacements... a modern, graduate level treatment of the classical theory of elasticity... concise and easily read, it can be highly recommended to the casual but mature reader. Moreover, the ideas on the philosophical basis of elasticity and thermoelasticity are of great interest to the specialist."

Physics Today

NOW AVAILABLE in the LANDAU-LIFSHITZ Course of Theoretical Physics

Vol. 1 ► MECHANICS

Translated by J. B. SYKES and J. S. BELL

The exposition is based upon the most general principles: Galileo's principle of relativity and Hamilton's principle of least action. Topics treated include: the equations of motion, conservation laws, integration of the equations of motion, collisions between particles, small oscillations, motion of a rigid body, and the canonical equations.

165 pp, 55 illus, 1960-\$6.50

Vol. 2 ► THE CLASSICAL THEORY OF FIELDS

Translated by Morton Hamermesh

A systematic presentation of the theory of electromagnetic and gravitational fields. 354 pp, 12 illus, 1951—\$11.00

Vol. 3 ▶ QUANTUM MECHANICS—Non-relativistic Theory

Translated by J. B. SYKES and J. S. BELL

Covers a wide range of problems in quantum mechanics which can be treated without the use of relativistic theory.

515 pp, 51 illus, 1958—\$12.50

Vol. 5 ► STATISTICAL PHYSICS

Translated by E. Peierls and R. F. Peierls

An exposition of statistical physics and thermodynamics, completely rewritten and augmented from the original Russian edition.

Vol. 6 ► FLUID MECHANICS

Translated by J. B. Sykes and W. H. Reid

Treats fluid mechanics as a branch of theoretical physics. Covers topics not usually found in such textbooks, e.g. heat transfer and diffusion in fluids, combustion, dynamics of superfluids and relativistic fluid dynamics.

536 pp. 119 illus, 1959—\$14.50

Vol. 7 ► THEORY OF ELASTICITY

Translated by J. B. Sykes and W. H. Reid

Includes not only the ordinary theory of the deformation of solids, but such topics as thermal conduction and viscosity in solids, and problems in the theory of elastic vibrations and waves.

134 pp, 20 illus, 1959—\$6.50

Vol. 8 ► ELECTRODYNAMICS OF CONTINUOUS MEDIA

Translated by J. B. Sykes and J. S. Bell

Deals with the theory of electromagnetic fields in matter and the theory of the macroscopic electric and magnetic properties of matter. Chapter titles: electrostatics of conductors and dielectrics, constant current and magnetic field, ferromagnetism, superconductivity, quasistatic electromagnetic field, magnetic fluid dynamics, electromagnetic wave equations, propagation of electromagnetic waves, electromagnetic waves in anisotropic media, passage of fast particles through matter, electromagnetic fluctuations, scattering of electromagnetic waves, diffraction of x-rays in crystals.

417 pp, 46 illus, 1960—\$12.50

ADDISON-WESLEY PUBLISHING COMPANY, INC. Reading, Massachusetts

McGraw-Hill Literature in Science

MODERN PHYSICS FOR THE ENGINEER,

Second Series

By Louis N. Ridenour; and William A. Nierenberg, University of California, Berkeley. University of California Extension Series. 408 pages, \$9.50.

PRACTICAL PHYSICS,

Second Edition

By Marsh W. White, Kenneth V. Manning, and Robert L. Weber, The Pennsylvania State University. 484 pages, \$5.50.

COLLEGE PHYSICS,

Third Edition

By Robert L. Weber, Marsh W. White, and Kenneth V. Manning, The Pennsylvania State University. 627 pages, \$8.00.

THE PHYSICAL UNIVERSE

By Konrad B. Krauskopf, Stanford University, and Arthur Beiser, New York University. 576 pages, \$6.50.

METEOR SCIENCE AND ENGINEERING

By D. W. R. McKinley, National Research Council, Ottawa, Canada. McGraw-Hill Electronic Science Series. Ready in May, 1961.

Send for copies on approval

McGraw-Hill Book Company, Inc.

330 West 42nd Street New York 36, New York

ing (i.e., recording with scanty detail) the available information on a number of systems. Although there is a section dealing with ESR and triplet states, the very important work of Hutchison and Mangum is not even mentioned, and the work of Weissman and McConnell dealing with spin density in various radicals is also overlooked. In the section dealing with polymerization, the work of Morawetz on γ -induced solid-state polymerization is not mentioned.

In view of the probable widespread interest in the subject matter, it seems a pity that I cannot recommend this book on any grounds.

Finite-Difference Methods for Partial Differential Equations. By George E. Forsythe and Wolfgang R. Wasow. 444 pp. John Wiley & Sons, Inc., New York, 1960. \$11.50. Reviewed by William Nachbar, Lockheed Missiles & Space Division.

TECHNIQUES for the numerical integration of partial differential equations by finite difference methods have been greatly advanced by research papers appearing in the mathematical and physical literature over the past ten years. This advance may be associated with the widespread availability, which came about during that same time period, of internally programmed, electronic digital computers with large, highspeed memories. These machines not only have stimulated theoretical mathematical research in numerical analysis but also have been the instruments for mathematical experimentation, whereby, for example, stability and error growth in numerical techniques at large scale are studied empirically. The computer programmer and the physicist, who are interested in becoming familiar with this very recent literature and in making use of its results, have available now in this book a comprehensive monograph which presents the new developments in a proper background of the more classical theory of partial differential equations.

The mathematical material covers 415 pages and is presented in four parts: Hyperbolic Equations in Two Independent Variables (69 pp.); Parabolic Equations (61 pp.); Elliptic Equations (230 pp.); Initial Value Problems in More than Two Independent Variables (55 pp.). In the third portion, detailed attention is paid to explicit and implicit overrelaxation methods, such as the Young-Frankel Theory (1950), and to their application to the computer.

Professors Forsythe and Wasow are well qualified to discuss new results, having made numerous contributions themselves to original research. The senior author is also especially well noted for his bibliographic work and his knowledge of Russian literature. The summaries of and references to papers written since 1950, many of which exist in foreign languages or as company reports, greatly enhance the value of this work.

Adequate reference is also made to other texts which treat more exhaustively special topics in mathematics and physics only briefly touched upon in the present