experiment. In point of fact, of course, it had been realized for some time that an observed asymmetry of beta emission would disprove parity conservation without involving any detailed theory of beta emission.

It is, of course, perfectly true that in vast fields of physics existing theory is a very good guide to the choice of what experiment to perform. However, it is just in those rapidly developing fields, where one is working on the frontiers of knowledge, that theory sometimes becomes a doubtful guide: for if it were a reliable guide, one would not be at the frontier but well inside fully consolidated territory. On the frontiers of knowledge a technically possible experiment suggested by theory should of course be performed; however, an attractive and technically possible experiment should not be omitted because existing theory suggests that it will be uninteresting. In most cases theory will prove right; in rare cases it will prove wrong and these are the great discoveries.

> P. M. S. Blackett Imperial College, London

## References

References

1. H. Kurti, Physics Today 11, no. 3, 19 (1958).

2. P. M. S. Blackett, Proc. Roy. Soc. A 251, 293 (1958).

3. T. D. Lee and C. N. Yang, Phys. Rev. 104, 254 (1956).

4. C. S. Wu, E. Ambler, R. W. Hayward, D. D. Hoppes, and R. P. Hudson, Phys. Rev. 105, 1413 (1957).

5. R. V. Pound, Phys. Rev. 76, 1410 (1949).

6. B. Bleaney, Proc. Roy. Soc. A 64, 315 (1951).

7. J. M. Daniels, M. A. Grace, and F. N. H. Robinson, Nature, 168, 780 (1951).

8. C. J. Gorter, O. J. Poppema, M. J. Steenland, and J. A. Beun, Physica 17, 1050 (1951).

9. C. J. Gorter, Physica 14, 504 (1948).

10. M. E. Rose, Phys. Rev. 75, 315 (1949).

11. E. Ambler, M. A. Grace, N. Kurti, H. Durand, C. E. Johnson, and H. R. Lemmer, Phil. Mag. 44, 216 (1953).

12. R. L. Garwin, L. M. Lederman, and M. Weinrich, Phys. Rev. 105, 1415 (1957).

## Biology and Magnetic Fields

THERE has been an increased and biological interaction between magnetic fields and biological This subject appears materials in the past few years. This subject appears to be a specialized section of biomedical electronics, but with no organized means of communication except via formally published papers. Several individuals interested in this field met recently and found the exchange of information and ideas to be of great mutual benefit. We would propose therefore the establishment of an informal group of people working in the field, as well as those in allied fields who have an interest in this topic. We would envision perhaps a short newsletter and perhaps a list of current or proposed projects, observations, new ideas, etc. We suggest that it not be limited to those actively engaged in a project of this type, but that it include all interested parties, engineering or biological, who would be willing to render advice and discussion to groups in their immediate area. We have found that communication between the various disciplines is of incalculable value, and as broad a representation as possible from both the biological and engineering fields is desirable.

We interpret the term "biological effects of magnetic fields" to include alterations in the behavior,

physiological state, biochemical processes, growth responses, reaction to injury, etc., induced by exposure of living organisms to magnetic fields. The more basic aspects of magnetic field interaction with cellular or subcellular entities (NMR, Hall effects, etc.) would be included in so far as they had a bearing on the function of the organism as a whole,

If any interested readers will write to either of the undersigned with their suggestions, opinions, current projects, ideas, etc., we will attempt to get out the first communication to all correspondents. It will be possible to forward, to those interested, an extensive bibliography on this subject recently prepared by Dr. Otto Wendel of the Albany Medical College. Should interest and numbers warrant it, further organization of the group within the confines of The Biophysical Society or American Physical Society would be contemplated. Robert O. Becker

Chief, Orthopedic Section Veterans Administration Hospital Syracuse 10, N. Y.

Otto W. Wendel Sterling-Winthrop Research Institute Rensselaer, N. Y.

## A Translator's Rebuttal

Y translation of L. A. Chernov's Wave Propagation in a Random Medium was reviewed by Prof. Philip Morse in the December 1960 issue of Physics Today. I am very grateful to Prof. Morse for his favorable review. However, I must take exception to a remark made in the first paragraph of the review, where Prof. Morse first enunciates a dictum, dubbed "Condon's rule", to the effect that "a technical volume is not worth reviewing if its author has not considered it important enough to provide with an index" and then asserts that "the present reviewer has reluctantly decided to break the rule just this once, since the sins of the translator should not be visited on the author, and besides, this is an important book." (My italics.)

The clear implication of the statement quoted is that I, as sinning translator, deleted an index that appeared in the Russian original. This is simply not true! There is no index in the Russian original, which I offer to the inspection of all interested parties. Moreover, I assure the reviewer that I would not have shirked the trivial task of translating the index and supplying the correct page references, had Chernov's book contained an index in the first place.

It seems to me that a corollary of this misunderstanding is to exhibit that Condon's rule is false. For, despite the fact that Chernov did not see fit to equip his book with an index, has not Prof. Morse gone on to say that "this is an important book" and "the monograph is a readable and well-organized review of a difficult subject of timely interest"? I suggest that Condon's rule does not apply to books of rather small mass! Richard A. Silverman

Jamaica, N. Y.