continuing to collaborate with members of the Bell Laboratories' staff during his stay at La Jolla. Born in Czechoslovakia, he received his bachelor's, master's, and doctoral degrees from the University of California. During' 1959–60 he was a visiting associate professor at Columbia University.

Dr. Feher is the second recipient of the award. He was cited for work done at Bell Laboratories which resulted in his "originating and developing the electron-nuclear double-resonance technique and for applying it in solid-state and nuclear research". The award was first presented by the Society in December 1959 to Donald A. Glaser.

Society of Rheology

The 1960 Bingham Medal of the Society of Rheology was awarded in November to Bruno H. Zimm of the University of California School of Science and Engineering at La Jolla. The presentation was made by John H. Elliott, president of the Society, at a ceremony held as part of the organization's 31st annual meeting at the Mellon Institute in Pittsburgh.

A native of Woodstock, N. Y., Dr. Zimm received his PhD in chemistry from Columbia University in 1944, completing his doctoral thesis (on the vapor pressure of alkali halides) under J. E. Mayer. After working on several war projects, one on aerosols at Columbia and another on plastics at Brooklyn Polytechnic Institute, he accepted a faculty appointment at the University of California at Berkeley in 1946. He left Berkeley in 1951 to join the General Electric Research Laboratory as a research associate. He was with GE until last year, when he returned to California as a member of the La Jolla faculty.

The Bingham Medal, which has been awarded annually since 1948 for outstanding contributions in the science of rheology, was established in memory of the late Eugene C. Bingham, professor of chemistry at

Lafayette College from 1916 to 1945 and the founder of the Society of Rheology. F. D. Dexter, chairman of the Society's Bingham Award Committee, read the citation, which is quoted in part below:

". . . After graduation, our medalist made contributions in such number that it is beyond the scope of this talk to discuss all or even a large portion of them. Rather, I would like to trace some of his key developments to show the manner in which he lays the ground work for understanding complex phenomena.

"In 1944, Dr. Zimm went to the Polytechnic Institute of Brooklyn, where, working under Dr. Herman Mark, he developed an osmometer capable of measuring the molecular weight of very small samples at temperatures up to 150°C. He followed this up at the University of California, where he went in 1946, by developing a unique method of making and interpreting light-scattering measurements. Here he developed what essentially amounted to a double extrapolation method for determining molecular weight and indicating molecular shape factors for the polymer.

"His interest was then directed toward the development of the hydrodynamic theory for visco-elastic properties of solutions of large molecules. This theory took into account the important parameter of hydrodynamic interaction and represented a major step forward in the theory of visco-elastic properties. Shortly following this, he developed a dynamic method for the measurement of the visco-elastic properties of solutions which used a unique longitudinally oscillating tube system.

"I believe that these accomplishments, selected from many made by Dr. Zimm, illustrate well his type of valuable contributions: going from basic factors of work up through soundly founded theory to define complex phenomena in fundamental and understandable terms. This indeed represents the goal of our scientific endeavors in the field of rheology."

Bruno H. Zimm (left) as he received the Bingham Medal from Rheology Society President John H. Elliott during the Society's annual meeting, held last November at the Mellon Institute. F. D. Dexter (at right), chairman of the organization's Bingham Award Committee, introduced Dr. Zimm as the 1960 Bingham Medalist.

