

OPTICAL PUMPING SPECTRAL LAMP

This light source provides high-intensity light concentrated at the center of the rubidium resonance lines. The spectral lamp with self-contained excitation oscillator is now available in limited quantities to interested researchers for \$275.00.

Write Instrument Division for descriptive literature.

SENIOR PHYSICIST

Magnetics department of our Research Division offers an unusual opportunity for a physicist or engineer (Ph.D. desirable) to participate in and lead experimental and theoretical studies in various aspects of magnetism and magnetic materials. Company sponsored projects are underway on thin films, fine particles, magneto-optics and allied areas. Job environment emphasizes individual achievement.

AMPEX CORPORATION

World Leader in Magnetic Recording

Send resumes to:

Skipwith W. Athey Director, Research Lab. 934 Charter Street Redwood City, California continuum theories of elasticity, plasticity, and viscoelasticity are presently receiving vigorous attention because of their great practical importance. Several chapters are outstanding contributions of this kind. A very complete account of cavity formation in the interior of an incompressible solid is given by H. G. Hopkins. "Dynamic Expansion of Spherical Cavities in Metals" (78 pp.). In this paper, spherical symmetry and uniform and adiabatic expansion of the gas bubble (in accordance with the Jones theoretical equation of state for TNT) are assumed; an elastic-plastic material is assumed, with account taken of work-hardening and rateof-strain effects, and of large as well as of small deformations. W. T. Koiter presents a masterful review of his subject in "General Theorems for Elastic-Plastic Solids" (51 pp.). A review of various approximation methods, and a comparison of their predictions with the exact solutions to the Pochhammer-Chree equations, are given by W. A. Green in "Dispersion Relations for Elastic Waves in Bars" (36 pp.). The mathematical treatment of problems in viscoelastic solids is reviewed by S. C. Hunter, "Viscoelastic Waves" (53 pp.).

Secondly, several chapters in this volume review the increasing attention that is being directed to improving the continuum theory of solids so as to include "real" effects on a more fundamental basis. Two contributions are outstanding in this regard: "Thermoelasticity, the Dynamical Theory" by P. Chadwick (63 pp.), an account of recent developments in the irreversible thermodynamics of an elastic solid; and "Continuous Distributions of Dislocations" by B. A. Bilby (65 pp.). Bilby's review describes most exciting and important developments, for, in the last few years, an influx of powerful mathematical methods from topology and modern geometry has entered dislocation theory with possibly far-reaching results. To quote from this author, "it now seems possible to bring the ideas of the atomic theory with discrete dislocations into closer association with those of the macroscopic theory, and it is to be expected that the two disciplines will react on each other to their mutual advantage".

Physique nucléaire. By Michel Bayet. 404 pp. Masson et Cie, Paris, France, 1960. 65 NF. Reviewed by Fay Ajzenberg-Selove, Haverford College.

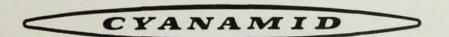
THESE appear to be the notes worked out for a specific course by a conscientious physicist who is not professionally familiar with nuclear physics. The level is roughly that of a senior or first-year graduate course. No knowledge of quantum mechanics is assumed. One third of the book deals with introductions to various theoretical topics such as elementary quantum mechanics, statistical mechanics, and relativity. The nuclear part of the volume is closely based on Evans, Halliday, and Kaplan. There are a number of criticisms that can be made: much of the theoretical introduction is irrelevant in content and level of presentation to the remainder of the book, although it may have suited the needs of a particular course;

RESEARCH SUPERVISOR

The solid state research program of our Central Research Division now includes investigations in the fields of thermoelectric materials, electroluminescence, infra red amplifiers, and the mechanism of electronic conduction in organic solids.

For continuation and expansion of our solid state research we are seeking an experienced, able physicist to supervise much of this program. Qualifications for this position include a PhD degree in Physics and at least several years of post-doctoral experience in some aspect of the solid state area.

This research is corporate sponsored and publication of results is encouraged. Freedom to carry on individual research as well as the supervisory responsibility is assured.


The Laboratories represent an extensive scientific community, providing facilities for some 450 technically trained people, almost 200 of whom are PhD's. Our Laboratories are well equipped for physical and chemical research and include well-staffed groups in the allied fields of chemical physics, such as the many areas of spectroscopy, magnetic resonance and radiation.

We are pleasantly situated in suburban Connecticut just 35 miles from New York City, in an area endowed by nature with recreational facilities and benefiting by the cultural advantages of its proximity to the city. Basic research in solid state physics is also carried out at the Central Research Division's Laboratory at Geneva, Switzerland.

Please address your replies to:

Charles R. Young
Employee Relations

AMERICAN CYANAMID COMPANY
1937 West Main Street
Stamford, Conn.

LASER-ASE

RUBY RODS fabricated

to exacting specifications

VALPEY CRYSTAL CORPORATION is prepared to supply special chromium doped ruby rods fabricated to your specifications with quick delivery.

We can supply rods fabricated from standard growth material and slow grown material oriented at 0° or 90°. We have for quick delivery, 04%, 08% and 1.2% final chromium doped material both in standard and slow growth boules. Other chromium dopings also available. Valpey will also fabricate your material.

Depending on orientation we can supply rods from .080" diameter up to .500" diameter and up to 21/4" in length.

We can supply rods to the following specs:

- C axis orientation to within 10 minutes
- · End surfaces optically polished flat to 1/4 wave of sodium light.
- Ends parallel to within .000010"
- Tolerance on length ± 005", diameter ± 001". Tolerance on 90° angle between end faces and cylindrical surfaces within 1 minute

Valpey's precision optical department is also prepared to fabricate other materials to your specifications.

Please submit your specifications for a prompt quotation.

VALPEY CRYSTAL CORPORATION Holliston, Mass. . Tel. GArden 9-4851, 9-4854

Some specific openings now available

Communication Specialists

Execution of RF tracking and communication system projects.

Antenna Specialists

Analysis, design and evaluation of giant Antenna Structures and Servo Systems.

Radio Research Engineers

Design of advanced RF transmitter/receiver equipment.

Research Scientists

Digital data and control system analysis and synthesis.

Mathematicians or Communication System Analysts Analog and Digital system analysis. Noise, coding, in-formation theory. Linear and non-linear filter theory.

Several openings also exist for supervisors of Research and Advanced Development Projects performed by industry for JPL.

Send complete qualification resume now for immediate consideration

CALIFORNIA INSTITUTE OF TECHNOLOGY

JET PROPULSION LABORATORY

the author does not show a deep understanding of the relative importance of various topics; there are a number of errors arising from his unfamiliarity with the field; there is no feeling conveyed of the experimental method in nuclear physics, although techniques are mentioned; no problems are listed; throughout there are surprising, and unpedagogical, variations in level of approach. This book may be of some use to exclusively French-reading physics students, although Halliday's excellent text has been translated into French. However, the book cannot be recommended to anyone who can read English.

Wave Propagation and Group Velocity. By Léon Brillouin, 154 pp. Academic Press Inc., New York, 1960. \$6.00. Reviewed by Nicholas Chako, Queens College.

NOTWITHSTANDING the great interest in the field of wave propagation in material media and its many industrial and other applications, there exists, as far as the reviewer is aware, no treatise which covers in a comprehensive and unified form the theoretical aspects of this field, especially those dealing with propagation of waves in dispersive and absorbing media. This gap has partially been filled with the timely appearance of Professor Brillouin's excellent monograph, which contains, in the English version, the fundamental papers by Sommerfeld and the author [originally printed in Ann. Physik, 44(1914)] and some of the author's later publications. The purpose of collecting these papers in a book could not be stated better than the author already has: All these modern developments (radiopropagation and signaling; ultra-acoustic, water, and seismic waves; waveguided waves, etc.) made it advisable to assemble here a systematic presentation of the original papers which are rather difficult to find nowadays . . . for these problems have come again into the foreground in connection with the propagation of radio signals and radar . . . and seem to have been ignored by many young physicists and radio engineers, who frequently spend too much time rediscovering some of the classical results. The above remarks apply as well to many fundamental papers by other famous scientists, especially, to Hamilton's epoch-making contributions to geometrical optics.

The papers gathered in this book, although limited in their scope by the special cases which they treat, are still of sufficiently general character to provide a broad basis not only for a clear comprehension of the phenomena of wave propagation in dispersive and absorbing media, but also they open the door to the student and research worker for understanding the recent developments and for dealing with more complex problems in this branch of science.

In the first chapter the author presents in a succinct, but clear, manner the distinction between phase, group, and signal velocity in a dispersive medium. This distinction, especially between the group and signal velocity, arose in connection with Einstein's statement